Finding Small Solutions to Low Degree Polynomials and
Applications

Aleksei Udovenko

SnT, University of Luxembourg

Seminar on Lattices in Cryptography
June 7, 2019

.l ST

UNIVERSITE DU

i i
LUXEMBOURG securityandtrustlu

https://sp2.uni.lu/training/introduction-to-lattices-and-their-applications-in-computer-science-cryptography-seminar/

Plan

Finding Small Solutions
Applications to RSA

Conclusion

0/25

Finding Small Solutions Applications to RSA Conclusion

Goal

Theorem

Let N be an integer and f € Zy[x] monic, deg f = d.
Then we can efficiently find all

x€Z:|x|<Bandf(x)=0 (mod N)
for B = N'/9.

1/25

Finding Small Solutions Applications to RSA Conclusion

Main ldea

Finding roots over Zy 7

2/25

Finding Small Solutions Applications to RSA Conclusion

Main ldea

Finding roots over Zy 7

Finding roots over Z is easy.

2/25

Finding Small Solutions Applications to RSA Conclusion

Main Ildea

Finding roots over Zy 7
Finding roots over Z is easy.

Let's find g € Z[x], such that

f(x)=0 (mod N) = g(x)=0.

2/25

Finding Small Solutions Applications to RSA Conclusion

Main Ildea

How? We want to prevent overflowing N:

Let x € Z, |x| < B.
If|lg(x)| < N, then
g(x)=0 (mod N) = g(x) =0.

3/25

Finding Small Solutions Applications to RSA Conclusion

Main Ildea

How? We want to prevent overflowing N:

Let x € Z, |x| < B.
Iflg(x)| < N, then
g(x)=0 (mod N)= g(x)=0.

Let

d—1

g(x) =xT+ ag_1x? 1+ ...+ aix + a € Z[x].

3/25

Finding Small Solutions

Main Ildea

How? We want to prevent overflowing N:

Let x € Z, |x| < B.
Iflg(x)| < N, then
g(x)=0 (mod N) = g(x) =0.

Let
g(x) =x?+ag_1x?T+ .. 4 a1x+ ag € Z[x].

We want for all i and for all x with |x| < B:

3/25

Finding Small Solutions Applications to RSA

Main Ildea

How? We want to prevent overflowing N:

Let x € Z, |x| < B.
Iflg(x)| < N, then
g(x)=0 (mod N) = g(x) =0.

Let

g(x) =x?+ag_1x?T+ .. 4 a1x+ ag € Z[x].

We want for all i and for all x with |x| < B:

Conclusion

3/25

Finding Small Solutions Applications to RSA Conclusion

|dea 1: Constant Multiples

Consider a (nonzero) multiple of f(x). It has same roots modulo N.

Johan Hastad. 1988. Solving simultaneous modular equations of low degree.
SIAM J. Comput. 17, 2 (April 1988), 336-341. 4/25

Finding Small Solutions Applications to RSA Conclusion

|dea 1: Constant Multiples

Consider a (nonzero) multiple of f(x). It has same roots modulo N.

How to find a "good" multiple? Use LLL!

Johan Hastad. 1988. Solving simultaneous modular equations of low degree.
SIAM J. Comput. 17, 2 (April 1988), 336-341. 4/25

Finding Small Solutions Applications to RSA Conclusion

|dea 1: Constant Multiples

Consider the lattice L:

N 0 0 ao
0o N 0 a
0 O

N ag-1
0 0 1

(d+1)x(d+1)

5/25

Finding Small Solutions Applications to RSA

|dea 1: Constant Multiples

Consider the lattice L:

N 0 0 ao
0o N 0 ai
0 0

N ag_1
0 0 1

(d+1)x(d+1)

The last column corresponds to f(x).
The other columns correspond
to reductions mod N (into [—5; &7) .

Conclusion

5/25

Finding Small Solutions

Consider the lattice L:

N 0
0 N
0 0

|dea 1: Constant Multiples

a short vector v € L ;

0 a kag mod N
0 ai kay mod N
N ay_y kaZ_l r’r;oi/N
mo
0 1 (d+1)x(d+1) (d+1)x1

The last column corresponds to f(x).
The other columns correspond
to reductions mod N (into [—%; %]) .

5/25

Finding Small Solutions

|dea 1: Constant Multiples

Consider the lattice L: a short vector v € L :
N0 0 a0 kag mod N
0 BN . 0 Bay (kay mod N)B
0o 0 : :
-1y Bd-1, (kag_1 mod N)B9—!
L -1 k mod N)B?
0 - .- 0 B4 (k mod N)

Recall that we want B'al < di_ﬂ (@’ is a coefficient in new polynomial).

6/25

Finding Small Solutions

|dea 1: Constant Multiples

Consider the lattice L: a short vector v € L :
N0 - 0 a0 kag mod N
0 BN . 0 Ba; (kay mod N)B
0 0 . : :
Bd-1pn Rd-1, (kag—1 mod N)Bd_l
- a1 k mod N)B?
0 - .- 0 B4 (k mod N)

Recall that we want B'al < diﬂ ' (a% is a coefficient ir'w new polynomial).
Scale coordinates! = minimize B'a; = (ka; mod N)B'.

6/25

Finding Small Solutions

|dea 1: Constant Multiples

Consider the lattice L: a short vector v € L :
N0 0 a0 kag mod N
0 BN . 0 Ba; (kay mod N)B
0 0 ° : :
-1y Bd-1, (kag_1 mod N)B9—!
L -1 k mod N)B?
0 - .- 0 B4 (k mod N)

Upper-triangular structure:

det(£) = N-BN-...- B IN.BI = N9IBd(d+1)/2,

6/25

Finding Small Solutions Applications to RSA Conclusion

|dea 1: Constant Multiples

det(L) =N-BN-...- BN . BY = NIBId+1)/2,

7/25

Finding Small Solutions

Applications to RSA Conclusion

|dea 1: Constant Multiples

det(L) =N-BN-...- BN . BY = NIBId+1)/2,

LLL: vy € £ ||| < 2% - det(L) it = 2% . N/ (@D gd/2,

7/25

Finding Small Solutions Applications to RSA Conclusion

|dea 1: Constant Multiples

det(£) = N-BN-...- BN . BY = NIBa@+1)/2
LLL: vy € £ ||| < 2% - det(L) it = 2% . N/ (@D gd/2,

Require ||v1]| < diﬂ:

2

d N N1/(d+1) d
27 . Nd/(d+1)Bd/2 < — & B<«|—M
) d+1 (d+1)-29/4

7/25

Finding Small Solutions Applications to RSA Conclusion

|dea 1: Constant Multiples

det(£) = N-BN-...- BN . BY = NIBa@+1)/2
LLL: vy € £ ||| < 2% - det(L) it = 2% . N/ (@D gd/2,

Require ||v1]| < diﬂ:

2

d N N1/(d+1) d
27 . Nd/(d+1)Bd/2 < — & B<«|—M
) d+1 (d+1)-29/4

B Nd(d2+1) O N (2)
PN < — = d(d+1)),
V2(d + 1)/ ()

7/25

Finding Small Solutions Applications to RSA Conclusion

Idea 2: Variable/Polynomial Multiples

f(x)=0 mod N = h(x)f(x)=0 mod N,
for any h € Zy[x].

D. Coppersmith. 1997. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
Journal of Cryptology, 10:233260, 1997. 8/25

Finding Small Solutions Applications to RSA Conclusion

Idea 2: Variable/Polynomial Multiples

f(x)=0 mod N = h(x)f(x)=0 mod N,
for any h € Zy[x].

basis: x'f(x) for i € {0,...,t}.

D. Coppersmith. 1997. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
Journal of Cryptology, 10:233260, 1997. 8/25

Finding Small Solutions Applications to RSA Conclusion

|dea 2: Variable/Polynomial Multiples

f(x)=0 mod N = h(x)f(x)=0 mod N,
for any h € Zy[x].

basis: x'f(x) for i € {0,...,t}.

Let's add x'f(x) to the lattice, for i € {1,...,d — 1}.

D. Coppersmith. 1997. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
Journal of Cryptology, 10:233260, 1997. 8/25

Finding Small Solutions Applications to RSA Conclusion

|dea 2: Variable/Polynomial Multiples

f(x)=0 mod N = h(x)f(x)=0 mod N,
for any h € Zy[x].
basis: x'f(x) for i € {0,...,t}.
Let's add x'f(x) to the lattice, for i € {1,...,d — 1}.

Careful: increases degree!

D. Coppersmith. 1997. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
Journal of Cryptology, 10:233260, 1997. 8/25

Finding Small Solutions

Applications to RSA

|dea 2: Variable/Polynomial Multiples

X0 Xt xdTl f(x) x-f(x) - x971.f(x)
1 0 0 0 a0 0 0
X 0 BN - : : Bag ' :
x? 0 0 : : - 0
: : BN B lag_, : . Bl
xd-1 0 B¢ BYay_1
x4 Batl :
: : : " . - . . B2,
x=t\o0o 0 .- ... 0 0 0 B2d-1

Conclusion

9/25

Finding Small Solutions Applications to RSA Conclusion

|dea 2: Variable/Polynomial Multiples

X0 Xt xdTl f(x) x-f(x) - x971.f(x)
1 N 0 O 0 a0 0 0
X 0 BN - : : Bag ' :
x2 0 .0 : : Ry 0
: : : BN B9lay_, : : B913,
xd-1 : : B 0 B¢ BYay_1
x4 R Bd+1 :
: : : " . - . . B2,
x=t\o0o 0 .- ... 0 0 0 B2d-1

det(L)=N-BN-...-BIIN.Bd.Bdt+l. . pB2d-1_ ydpgd(2d—1)

9/25

Finding Small Solutions Applications to RSA Conclusion

Idea 2: Variable/Polynomial Multiples

det(£) = NIBI(2d—1),

10 /25

Finding Small Solutions Applications to RSA Conclusion

|dea 2: Variable/Polynomial Multiples

det(£) = N9 BI(2d~1),

LLL: vi € £: [< 2°F - det(£)30 = 2% . N/2B(2d-1)/2,

10/25

Finding Small Solutions Applications to RSA

|dea 2: Variable/Polynomial Multiples

det(£) = N9 BI(2d~1),

LLL: vi € £: [< 2°F - det(£)30 = 2% . N/2B(2d-1)/2,

Require [v1]| < 4%:

2

1/2 2d-1
241 1 ped-1)2 _ N N
27¢ .NY?B <35 © B<|3gaeon

Conclusion

10/25

Finding Small Solutions Applications to RSA

|dea 2: Variable/Polynomial Multiples

det(£) = N9 BI(2d~1),

LLL: vi € £: [< 2°F - det(£)30 = 2% . N/2B(2d-1)/2,

Require ||v1]| < %:

2

1/2 2d-1
241 1 ped-1)2 _ N N
27¢ .NY?B <35 © B<|3gaeon

1
N2d—1

1
B < vz aieay ~ OV

Conclusion

10/25

Finding Small Solutions Applications to RSA

|dea 3: f-Multiples (mod N™)

ldea 1: £ « {f(x)} U {/v, Nx, Nx2,. ... Nxd—l} .

ldea 2: £ ¢ ... U {f(x),xf(x), . ,xd_lf(x)}

(increase degree of the polynomials).
ldea 3: L« 777

Conclusion

11/25

Finding Small Solutions Applications to RSA

|dea 3: f-Multiples (mod N™)

ldea 1: £ {f(x)} U {/v, Nx, Nx2, . .., Nxd_l} .

ldea 2: L+ ... U {f(x),xf(x),...,xdilf(x)}

(increase degree of the polynomials).
Idea 3: increase degree of N :

consider polynomials mod N™.

Conclusion

11/25

Finding Small Solutions Applications to RSA Conclusion

|dea 3: f-Multiples (mod N™)

ldea 1: £ « {f(x)} U {/v, Nx, Nx2,...,Nxd—1}.
ldea 2: L+ ... U {f(x),xf(x),...,xdflf(x)}

(increase degree of the polynomials).
Idea 3: increase degree of N :
consider polynomials mod N™.
powers of f(x) allow to lift:
L+ {N"f(x)'x [0<i<m0<j<d-1}.

covers ldeas 1 and 2!

11/25

Finding Small Solutions Applications to RSA Conclusion

|dea 3: f-Multiples (mod N™)

Example: d =2,m=2

N2x0 N2x1 NEXOF(x)Y NIxLF(x)D xOF(x)? x1f(x)?
x0 N? ? ? ? ? ?
x1 0 N2B1 ? ? ? ?
x2 0 0 NB? ? ? ?
x3 0 0 0 N1B3 ? ?
x* 0 0 0 0 B* ?
x> 0 0 0 0 0 B>

12/25

Finding Small Solutions Applications to RSA Conclusion

|dea 3: f-Multiples (mod N™)

Example: d =2,m=2

N2x0 N2x1 NIXOF(x)r NEIxLF(x)D xPf(x)? x1f(x)?
x0 N? ? ? ? ? ?
x1 0 N2B1 ? ? ? ?
x2 0 0 NB? ? ? ?
x3 0 0 0 N1B3 ? ?
x* 0 0 0 0 B* ?
x> 0 0 0 0 0 B>

Same upper-triangular structure = easy calculation of det(L).

12/25

Finding Small Solutions Applications to RSA Conclusion

|dea 3: f-Multiples (mod N™)

dim(£) = d(m + 1),
det(£) = NAm(m+1)/2 p(d(m+1)-1)d(m+1)/2

13/25

Finding Small Solutions Applications to RSA Conclusion

|dea 3: f-Multiples (mod N™)

dim(£) = d(m + 1),
det(£) = NAm(m+1)/2 p(d(m+1)-1)d(m+1)/2

d(m +1) 1 1 d(m+1)—

- det(£) T = 25— . ym2gld(mE=1)/2,

LLL: [jwy] < 2

13/25

Finding Small Solutions Applications to RSA Conclusion

|dea 3: f-Multiples (mod N™)

dim(£) = d(m + 1),
det(£) = NAm(m+1)/2 p(d(m+1)-1)d(m+1)/2

LLL: v < 2d(m+41)_:l .det(g)id(mlm = 2‘“”71 Nm/2g(d(m+1)-1)/2
Require ||v1]] < el m+1)
d(m+1)—1 _ N
2= 2 — 'Nm/zB(d(m+1) 1)/2 < o
d(m+1)

13/25

Finding Small Solutions Applications to RSA Conclusion

|dea 3: f-Multiples (mod N™)

dim(£) = d(m + 1),
det(£) = NAm(m+1)/2 p(d(m+1)-1)d(m+1)/2

LLL: v < 2d(m+41)_:l .det(g)id(mlm = 2‘“”71 Nm/2g(d(m+1)-1)/2
Require ||v1]] < el m+1)
HUmL m2 pld(mr1)-1)/2 N N
d(m +1)

=4 B<OL(d,m)Nd(Tn;l)—1:a(d7m)N%_e(%)

13/25

Plan

Finding Small Solutions
Applications to RSA

Conclusion

13/25

Applications to RSA

RSA - Recap

p, q two (large) primes, private
n=p-q, public

exponents: e public, d private such that
ed=1 (modlem(p—1,q—1))

encryption: ¢ = m® mod n

d

decryption: m=c® mod n

14 /25

Finding Small Solutions Applications to RSA Conclusion

“Cube” attack

e Assume small e, e.g. e = 3.

e Assume small m: m < N'/e.

15 /25

Finding Small Solutions Applications to RSA Conclusion

“Cube” attack

e Assume small e, e.g. e = 3.
o Assume small m: m < N/e.

e Then: c=m® mod n=...

15 /25

Finding Small Solutions Applications to RSA Conclusion

“Cube” attack

e Assume small e, e.g. e = 3.
o Assume small m: m < N/e.

e Then: c=m® mod n=... = m°.

15 /25

Finding Small Solutions Applications to RSA Conclusion

“Cube” attack

e Assume small e, e.g. e = 3.

e Assume small m: m < N'/e.

e Then: c=m® mod n=... = m°.

m = /c (over Z)!

15 /25

Applications to RSA

“Cube” attack

Assume small e, e.g. e = 3.
Assume small m: m < NV/e.
Then: ¢ = m® mod n=... = m°.
m = /c (over Z)!

Example

Let e = 3, N = 1000003.
Let m = 100, then ¢ = m® mod N = 1000000.
Clearly, m = /1000000 = 100.

15 /25

Applications to RSA

“Cube” attack
(Stereotyped messages)

e Assume small e, e.g. e = 3.
e Assume m is close to a constant a: m = o + mg, mg < NY/e,

e Example: constant padding:
“today’s secret password is: lllattice”.

16 /25

Applications to RSA

“Cube” attack
(Stereotyped messages)

Assume small e, e.g. e = 3.
Assume m is close to a constant o: m = o+ mg, mg < NY/e,

Example: constant padding:
“today’s secret password is: lllattice”.

More generally, ¢ = L(mg)¢ mod N, where L; € Zp;[x] is a public affine map.

16 /25

Applications to RSA

“Cube” attack
(Stereotyped messages)

Assume small e, e.g. e = 3.
Assume m is close to a constant o: m = o+ mg, mg < NY/e,

Example: constant padding:
“today’s secret password is: lllattice”.

More generally, ¢ = L(mg)¢ mod N, where L; € Zp;[x] is a public affine map.

Coppersmith: L(mg)¢ is a degree-e polynomial, mg < N* is a small root!

16 /25

Applications to RSA

“Cube” attack
(Stereotyped messages) - Example

e Let e =3, N =2000003.
o Let m= 1234567 + 7777777 mg, where mg = 50.

17 /25

Applications to RSA

“Cube” attack
(Stereotyped messages) - Example

e Let e =3, N =2000003.
o Let m= 1234567 + 7777777 mg, where mg = 50.

e Thenc=m® mod N =
(1234567 + 7777777mo)® mod N = 39947.

17 /25

Applications to RSA

“Cube” attack
(Stereotyped messages) - Example

Let e = 3, N = 2000003.

Let m = 1234567 + 7777777 mg, where mg = 50.

Then ¢ = m® mod N =

(1234567 + 7777777mo)® mod N = 39947.

We know that

m® — ¢ = 892450m3 + 1866122m3 + 726335mg + 302637 = 0 (mod N),
m3 + 1684527 mg + 1652432mq + 1942344 =0 (mod N).

17 /25

Applications to RSA

“Cube” attack
(Stereotyped messages) - Example

Let e = 3, N = 2000003.
Let m = 1234567 + 7777777 mg, where mg = 50.

Then ¢ = m® mod N =
(1234567 + 7777777mo)® mod N = 39947.

We know that
m® — ¢ = 892450m3 + 1866122m2 + 726335mqg + 302637 = 0 (mod N),
m3 + 1684527 mg + 1652432mq + 1942344 =0 (mod N).

Use Coppersmith's method, get my = 50.

17 /25

Applications to RSA

Hastad Broadcast Attack - Simple

e Assume small e, e.g. e = 3.

e Unrestricted m.

18/25

Applications to RSA

Hastad Broadcast Attack - Simple

e Assume small e, e.g. e = 3.
e Unrestricted m.
e Broadcasting scenario:

the same message m is encrypted under e different modulos Ny, Na, ..., Ne.

18/25

Applications to RSA

Hastad Broadcast Attack - Simple

Assume small e, e.g. e = 3.
Unrestricted m.

Broadcasting scenario:

the same message m is encrypted under e different modulos Ny, N, ..

ct=m® mod Ny,...,ce = m® mod N,.

., Ne.

18/25

Applications to RSA

Hastad Broadcast Attack - Simple

Assume small e, e.g. e = 3.
Unrestricted m.

Broadcasting scenario:

the same message m is encrypted under e different modulos Ny, N, ..

ct=m® mod Ny,...,ce = m® mod N,.
CRT: reconstruct C such that C = m® mod N1 N>... N,.

., Ne.

18/25

Applications to RSA

Hastad Broadcast Attack - Simple

Assume small e, e.g. e = 3.
Unrestricted m.

Broadcasting scenario:
the same message m is encrypted under e different modulos Ny, Na, ..., Ne.

ct=m® mod Ny,...,ce = m® mod N,.
CRT: reconstruct C such that C = m® mod N1 N>... N,.
Note that m < Ny = m® < NiNo ... No.

18/25

Applications to RSA

Hastad Broadcast Attack - Simple

Assume small e, e.g. e = 3.
Unrestricted m.

Broadcasting scenario:

the same message m is encrypted under e different modulos Ny, Ny, . ..

ct=m® mod Ny,...,ce = m® mod N,.

CRT: reconstruct C such that C = m® mod N1 N>... N,.
Note that m < Ny = m® < NiNo ... No.

Again: m = \e/f over 7.

18/25

Applications to RSA

Hastad Broadcast Attack - Harder

e Assume small e, e.g. e = 3.
e Unrestricted m.
e Protected broadcasting:

the same message m is encrypted under e different modulos Ny, Na, ..., Ne,

19/25

Finding Small Solutions Applications to RSA Conclusion

Hastad Broadcast Attack - Harder

e Assume small e, e.g. e = 3.
e Unrestricted m.
e Protected broadcasting:

the same message m is encrypted under e different modulos Ny, Na, ..., Ne,
but padded differently:

e.g. m= (mg + 2Imelj).

19/25

Applications to RSA

Hastad Broadcast Attack - Harder

Assume small e, e.g. e = 3.
Unrestricted m.

Protected broadcasting:

the same message m is encrypted under e different modulos Ny, Na, ..., Ne,

but padded differently:
e.g. m= (mg + 2Imelj).
More generally, ¢; = L;(mo)

e

mod N;, where L; € Zp,[x] are public affine maps.

19/25

Applications to RSA

Hastad Broadcast Attack - Harder

Assume small e, e.g. e = 3.
Unrestricted m.

Protected broadcasting:

the same message m is encrypted under e different modulos Ny, Na, ..., Ne,

but padded differently:

e.g. m= (mg + 2Imelj).
More generally, ¢; = L;(mo)
Can we break this?

e

mod N;, where L; € Zp,[x] are public affine maps.

19/25

Applications to RSA

Hastad Broadcast Attack - Harder

e Let gi(x) = (Li(x)¢ — ¢i) mod € Zp;[x].
e Note gj(mg) =0 (mod N;).

20/25

Applications to RSA

Hastad Broadcast Attack - Harder

e Let gi(x) = (Li(x)¢ — ¢i) mod € Zp;[x].
e Note gj(mg) =0 (mod N;).
e Step 1- CRT: find g € Zn,n,..n.[X], deg g = e such that

g=g (mod N;).

20/25

Applications to RSA

Hastad Broadcast Attack -

Let g;(x) = (L,’(X)e — C,') mod € ZN,-[X]-
Note gi(mg) =0 (mod N;).
Step 1 - CRT: find g € Znyn,. n.[x],degg =€

g=g (mod N;).

In particular, g(mg) =0 (mod Ny Ny ... N,).

Harder

such that

20/25

Applications to RSA

Hastad Broadcast Attack -

Let g;(x) = (L,’(X)e — C,') mod € ZN,-[X]-
Note gi(mg) =0 (mod N;).
Step 1 - CRT: find g € Znyn,. n.[x],degg =€

g=g (mod N;).

In particular, g(mg) =0 (mod Ny Ny ... N,).
How? Simply apply CRT to the coefficients.

Harder

such that

20/25

Applications to RSA

Hastad Broadcast Attack - Harder

e Step 2 - Coppersmith method:

21/25

Applications to RSA

Hastad Broadcast Attack - Harder

e Step 2 - Coppersmith method:
o mo < Ny < (NyNo...Ne)e.

21/25

Applications to RSA

Hastad Broadcast Attack - Harder

e Step 2 - Coppersmith method:
o mo < Ny < (NyNo...Ne)e.
e g(mg) =0 (mod NiN,...N.),degg = e.

21/25

Applications to RSA

Hastad Broadcast Attack - Harder

Step 2 - Coppersmith method:
mo < Ny < (NyNy... Ng)e.
g(mg) =0 (mod NiNy...N.),degg = e.

= recover mg!

21/25

Finding Small Solutions Applications to RSA Conclusion

sage.rings.polynomial.polynomial modn_dense ntl.small_roots(self, X=None, beta=1.0, epsilon=None,

**lwds)
Let N be the characteristic of the base ring this polynomial is defined over: N =
self.base ring(}.characteristic(). This method returns small roots of this polynomial modulo some factor
b ot N with the constraint that b >= N 7. Small in this context means that if is a root of f modulo b then
|z| < X. This X is either provided by the user or the maximum X is chosen such that this algorithm
terminates in polynomial time. If X is chosen automatically it is X = ceil(leN-‘iz-"‘"'f). The algorithm
may also return some roots which are larger than X. ‘This algorithm’ in this context means Coppersmith's
algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows
Alexander May's PhD thesis referenced below.

INPUT:

« x —an absolute bound for the root (default: see above)

« beta — compute a root mod b where b s a factor of N and b > N7 (Default: 1.0, so b = N)
= epsilon —the parameter € described above. (Default: 3/8)

o =+kwds — passed through to method Matrix_integer dense.LLL().

Note on Sagemath!

22/25

Finding Small Solutions Applications to RSA Conclusion

sage.rings.polynomial.pelynemial modn dense ntl.small_roots(self, X=None, beta=1.0, epsilon=None,

*Hwds)
Let N be the characteristic of the base ring this polynomial is defined over: N =
self.base_ring().characteristic(). This method returns small roots of this polynomial modulo some factor
b of N with the constraint that b >= N7, Small in this context means that if z: is a root of f modulo b then
|z| < X. This X is either provided by the user or the maximum X is chosen such that this algorithm
terminates in polynomial time. If X is chosen automatically it is X — ceil(l,f2N"f?-‘"a"). The algorithm
may also return some roots which are larger than X. ‘This algorithm’ in this context means Coppersmith's
algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows
Alexander May's PhD thesis referenced below.

INPUT:

« X —an absolute bound for the root (default: see abave)

beta — compute a root mod b where b is a factor of N and b > N7, (Default: 1.0, sob = N.)
epsilon — the parameter € described above. (Default: 3/8)

*+*kwds — passed through to method Matrix_integer_dense.LLL().

1. note 1: ¢ is the degree of the polynomial

23/25

Finding Small Solutions Applications to RSA Conclusion

sage.rings.polynomial.pelynemial modn dense ntl.small_roots(self, X=None, beta=1.0, epsilon=None,

*Hwds)
Let N be the characteristic of the base ring this polynomial is defined over: N =
self.base_ring().characteristic(). This method returns small roots of this polynomial modulo some factor
b of N with the constraint that b >= N7, Small in this context means that if z: is a root of f modulo b then
|z| < X. This X is either provided by the user or the maximum X is chosen such that this algorithm
terminates in polynomial time. If X is chosen automatically it is X — ceil(l,f2N"f?-‘"a"). The algorithm
may also return some roots which are larger than X. ‘This algorithm’ in this context means Coppersmith's
algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows
Alexander May's PhD thesis referenced below.

INPUT:

« X —an absolute bound for the root (default: see abave)

beta — compute a root mod b where b is a factor of N and b > N7, (Default: 1.0, sob = N.)
epsilon — the parameter € described above. (Default: 3/8)

*+*kwds — passed through to method Matrix_integer_dense.LLL().

1. note 1: ¢ is the degree of the polynomial
2. warning 2: € = % by default, and is not adjusted!!! (bug?)

23/25

Finding Small Solutions Applications to RSA Conclusion

sage.rings.polynomial.pelynemial modn dense ntl.small_roots(self, X=None, beta=1.0, epsilon=None,

*Hwds)
Let N be the characteristic of the base ring this polynomial is defined over: N =
self.base_ring().characteristic(). This method returns small roots of this polynomial modulo some factor
b of N with the constraint that b >= N7, Small in this context means that if z: is a root of f modulo b then
|z| < X. This X is either provided by the user or the maximum X is chosen such that this algorithm
terminates in polynomial time. If X is chosen automatically it is X — ceil(lf2N”2-‘”’"). The algorithm
may also return some roots which are larger than X. ‘This algorithm’ in this context means Coppersmith's
algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows
Alexander May's PhD thesis referenced below.

INPUT:

« X —an absolute bound for the root (default: see abave)

beta — compute a root mod b where b is a factor of N and b > N7, (Default: 1.0, sob = N.)
epsilon — the parameter € described above. (Default: 3/8)

*+*kwds — passed through to method Matrix_integer_dense.LLL().

note 1: § is the degree of the polynomial

warning 2: € = % by default, and is not adjusted!!! (bug?)
you get X = [N/ 4-1/8/2] .

for example, d = 3 = X = [N°/24/2],

instead of “expected” N/3 = N&/24|

5. need to compute required ¢ manually before calling...

b=

23/25

Finding Small Solutions Applications to RSA

© 0N U e W N

O T T R e S ST ST
W N RO OO U A WN RO

from sage.all import =*

N = next_prime(10%%50)
E=3
x = PolynomialRing(Zmod(N), names='x').gen()

m0 = 10*%*x12 + 20190607 # secret

X = 2%10*x12 # bound
= 1234567890 * mO + 11223344556677889900
c = pow(m, E, N)

poly = (1234567890 * x + 11223344556677889900) ** E - ¢
poly /= poly.leading_coefficient()

epsilon = RR(1/poly.degree() - log(2*X, N))
if epsilon <= O:

print "Too large bound X!"

quit(

print "epsilon:", "27%f" 7 RR(log(epsilomn, 2))
for root in poly.small_roots(epsilon=epsilon):
print "root", root

Conclusion

24 /25

Plan

Finding Small Solutions
Applications to RSA

Conclusion

24 /25

Finding Small Solutions Applications to RSA Conclusion

A good resource by David Wong:
github.com/mimoo/RSA-and-LLL-attacks
e implementation of univariate and bivariate Coppersmith algorithms in Sage

(from scratch, using LLL);

e also a survey on lattice-based attacks with a good intro.

Another good resource:

Alexander May's Dissertation

25/25

https://github.com/mimoo/RSA-and-LLL-attacks
https://www.math.uni-frankfurt.de/~dmst/teaching/WS2014/Vorlesung/Alex.May.pdf

	Finding Small Solutions
	Applications to RSA
	Conclusion

