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Part I:
Definitions

The formal definition of a lattice

Definition (lattice)
A lattice is a discrete additive subgroup of R™.
In other words, a lattice is a subset A C R™ satisfying the
following properties:
@ (Subgroup property) A is closed under addition and
subtraction.

® (Discreteness) There is an € > 0 such that any two
distinct lattice points x # y € A are at distance at least
lz —yll > e
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Definitions

Constructing lattices

Definition 1 (lattice generated by linearly independent

vectors)

Let by, ...,b, € R™ be linearly independent vectors.
Let B = [b1, ..., by].

@ The lattice generated by B is the set

L(B)={Bze€Z™:xcZ"} = {be x; €L
=1

® The matrix B is called the basis of the lattice £(B).

} |

©® We call n the rank of L(B) and m the dimension of L(B).

O If n =m, then L(B) is called a full rank lattice.
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Part I: 5 om0
Definitions Def|n|t|0n 2

Let B be any lattice basis and let £(B) be the corresponding
lattice.

@ The span of L(B) is the vector space generated by B:
span(L(B)) = span(B) =< B >={Bx ¢ R™ : z € R"}

® The fundamental parallelepiped of the lattice basis B is
given by

PB)={BzeR":ze€R", 0<z; <1 V0<i<n}

:{ixib¢:0§x¢<1}.

=1
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More examples

(0,0)

. . .

. . .
21

. . .

. . .

Another basis of Z>

Not a basis

(0,0)

Not a full-rank lattice
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Part Il
Comparing
lattices

Let A be a lattice of rank n, and let by,...,b, € A be linearly

independent lattice vectors.
Then, by, ..., by, form a basis of A < P(by,...,b,) N A = {0}.
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A lattice and its possible bases (2)

. .

. . L]
(-2,1) (2,1)
°

. \/ ‘

o (0,0)

0,0) & .
. . .

We compare both lattices by superposing them:

. . L]
. \/ .
0,0
. .
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] A lattice and its possible bases (3)

R Proof of lemma 3:
e 1) by, ..., b, form a basis of A = P(by,...,b,) N A = {0}:

lattices

e By definition,

A:{inbi:xiEZ}.

® Furthermore,

P(by, ... by) = {be 0< < 1} .

® Hence,
P(by,...,bp,) N A ={0}.
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] A lattice and its possible bases (4)
2) P(b1,...,bn) N A = {0} = by, ..., b, form a basis of A:
® Since by,...,b, € A, E(bl, ...,bn) C A

Part II: . . . .
Comparing ® ° Since A is a lattice of rank n and by, ..., b, are n linearly
lattices independent lattice vectors of A,

VzEA:m:Z:cibi (z; € R).

® |et
® |et
2 =r—a2 = Z(:cl — | ])b;.
® Since A is closed under addition and subtraction

z" € A.

Since 0 < x; — |z;] < 1forall 1 <i<mn,
2" € P(by,...,by).
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] A lattice and its possible bases (4)
2) P(b1,...,bn) N A = {0} = by, ..., b, form a basis of A:
® Since bi,....b, € A, ﬁ(bl, ,bn) CA.

Part Il ® ° Since A is a lattice of rank n and by, ..., b, are n linearly
omparing . .
lattices independent lattice vectors of A,

VmEA:m:inbi (x; €R).
® |et

¥ = Z |zi] b; € A

o =x—a' = (w;— |2:])bi € P(by, ..., by) N A
® Since P(by,...,b,) N A = {0}, 2" =0.
® Since by, ..., b, are linearly independent,
x; = |z;] for alll <i<mn.

In particular z; is an integer for all 1 <i < mn.
® Hence, z € L(by,...,b,) and so

AC LDy, ..., by).
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Comparing
lattices

Equivalence of bases (1)

Definition 4 (equivalence of lattices)

Let Bi, By be lattice bases. We say that B; is equivalent to
By if and only if L(B1) = L(B>).

Lemma 5
Two bases Bj, By of rank n are equivalent if and only if there
exists an unimodular matrix U (i.e. U is a square matrix with
integer coefficients and det(U) = +£1) such that By = B1U.
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Equivalence of bases (3)

Proof of lemma 5:

1) By, By are equivalent = 3U unimodular such that
Bz = BlUZ

Since B; and B, are equivalent,
L(By) = L(By).
Since V1 < ¢ <n:b; € By,
b; € L(B2) = L(By).
By definition of the lattice £(B;),
Ju; € Z™ such that b; = Bju;.

Let U = (u1,...,upn). Then clearly,
By = BU.

Similarly, one can construct V' € Z™*™ such that
By = B,V.
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Barthl Jim Equivalence of bases (3)

Proof of lemma 5:
1) By, By are equivalent = 3U unimodular such that
Ezﬁpl)gring B2 - BlU

lattices
: ® \We deduce that By = BoVU and so

By(Id—VU) = 0.

® Since the column vectors of Bs are linearly independent,
its inverse exists and so

Id=VU.
e Since 1 = det(Id) = det(V) det(U) and U,V are integer

matrices,
det(U) = £1.
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Equivalence of bases (4)

2) 3U unimodular such that By = BiU = By, By are
equivalent:

® Since By = B1U where By = (by, ..., b,) and
U= (ug,.., up),

Vlgzgn bi:BluZ—.
e Since U is unimodular, b; € £(B;) and hence

E(BQ) - ,C(Bl).

® Since any unimodular matrix has an inverse which is also

unimodular, we first deduce that
By = BoU™ L.
and then, the same argument as above yields

L(B1) C L(By).
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Part Il
Comparing
lattices

Corollary 6

Two bases are equivalent if and only if one can be obtained from
the other by the following operations on columns:

® b; < b; + kbj for some k € Z and i # j,
® b, < bj,
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Gram-Schmidt Orthogonalization
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Gram-Schmidt orthogonalization

Definition 7 (Gram-Schmidt orthogonalization)

Given any sequence of n linearly independent vectors b1, ..., b, €
R™, we define their Gram-Schmidt orthogonalization as the se-
quence of vectors b7, ..., b;, € R™ defined recursively by

i—1 *
< b;, bt >
® __ 1 ] *
B=bi= 2 st
j=1 J7

In other words, b; is the component of b; orthogonal to
* b*
T bl g
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An example of Gram-Schmidt

(0,0) b= b’{ (2,0)

The vector b5 does not belong to the lattice.
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Orthogonal-
ization

Properties of Gram-Schmidt
orthogonalization

Remark 8
Let b1,...,b, € R™ be n linearly independent vectors and let
b}, ...,b;, € R™ be their Gram-Schmidt orthogonalization.
@ (Orthogonality) For all i # j we have < b7, b7 >= 0.
® (Basis) Forall 1 <i <mn,
span(by, ..., b;) = span(by, ..., bY).
Note that in general L(by, ..., by) # L(b], ..., b}) (most of
the time b7 ¢ L(b1,...,b,)) and that a lattice does not
always admit an orthogonal basis!

©® (Order) The order of the Gram-Schmidt procedure
matters.
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Volume of the fundamental
parallelepiped

L] ° L] L ]
L] L]
b3 :: b b :i b2
(0, 0) h=b (0, 0) by="b

vol(P (b1, b2)) = [[b7] l|b2]| =2

Remark 9
Let b1,...,b, € R™ be n linearly independent vectors and let

15, by € R™ be their Gram-Schmidt orthogonalization.
Then: .
vol (P(by, ..., bn)) = [T 1% 1-
i=1
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Part IV:
Determinant

Determinant

Definition 10 (determinant of lattices)

Let A = £(B) be a lattice of rank n. We define the
determinant of A (denoted by det(A)) to be the n-dimensional
volume of the fundamental parallelepiped P(B) associated to
B. In symbols:

det(A) = vol(P(B)) = [ 5]
=1
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Barthel Jm Properties of the determinant (1)

Proposition 11
For any lattice basis B € R™*™

Part IV: ® det(L(B)) = /det(BTB),

Determinant
® In particular if B € R™*™ is a (non-singular) square
matrix, then det(L£(B)) = | det(B)| = d and dZ™ C L(B).
© The determinant is independent of the basis.
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Sarehel Jim Properties of the determinant (2)
Proof of proposition 11:
1) det(L(B)) = y/det(BTB) :
® By the Gram-Schmidt orthogonalization procedure, we know that
B=B"M
where M is an upper triangular matrix with 1's on the diagonal and
<VYIZ | 1p%|| for all j < i
<b;yb;>|\ 7| for all j < i.
Part IV: ° Hence'

Determinant

\Jdet(BT B) = \/det(MT (B*)T B*M) = y/det(MT) det((B*)T B*) det (M)
® Since M is upper triangular and has only 1's at its diagonal,
det(M) = det(M™) = 1.

® Furthermore, by orthogonality of the columns of B*,

n

det((B")"B™) = [TIbF1)* = (det(£(B)))*.

i=1
® Since det(L(B)) > 0 by definition,

Vaet((B*)TB*) = det(L(B)).
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Properties of the determinant (3)

2) If B € R™*™ is a (non-singular) square matrix, then
det(L(B)) = | det(B)| = d and dZ™ C L(B).

® Since B is a square matrix,

det(L(B)) = \/det(BT B) = \/(det(B))? = | det(B)).

Let v = dy € dZ" where y € Z".

Since B is non-singular, there is

z=B 'dyeR".

By Cramer’s rule:

Thus,

Hence,

o det((bl, ...,bi_l,dy,bi+1,

7bn))

i =

det(B)

=4 det((bl, vebic1,dy, biva, ...

zeZ".

v= Bz € L(B).
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Determinant

Properties of the determinant (4)

3) The determinant is independent of the basis.

® |let Bi, B2 be equivalent bases. Then, there is a unimodular matrix

U such that

® Thus,

det(L(B>))

By, = B1U.

= \/det(BT By)

= det(UTB?BlU)

_ \/(det(U))2 det(BT B1)

= 1/det(BT B1)
= det(L(B1))
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Remark 12

For any lattice basis B € R™*™
® (Hadamar inequality)

det(£(B)) = [T lIos 1l < T eal
i=1 i=1

Part IV:
Determinant

(since [|bF[] < [|bs]])-

® Geometrically, the determinant represents the inverse of
the density of lattice points in space (e.g., the number of
lattice points in a large and sufficiently regular region of
space A should be approximately equal to the volume of A
divided by the determinant.)

Small determinant = Dense lattice
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An example of a determinant

(0, 0) by=56; (2.0

By previous computations:
det(£L(b1,ba)) = b5 163 = 2
Hadamar's inequality is satisfied:

det(L(b1,b2)) < 2v2 = ||ba | [b2]|

Note

det (£(49)) = 1
Hence, £(}9) (i.e. dark and light blue points) is denser than £ ($1).
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minima

Sucessive minima (1)
Definition 13a (minimum distance)

Let A = £(B) be a lattice of rank n.
The minimum distance \; of A is the smallest distance between any
two lattice points:

M(A) = inf{lle =y : 2,y € A, # g

Equivalently, the minimum distance can be defined as the shortest
non-zero vector of A:

A1(A) = inf{||v]| : v € A\ {0}}.

Equivalently, the minimum distance is the smallest » > 0 such that A
contains at least one vector of length bounded by r,

A (A) = inf{r € Ry : dim(span(A N B(0,r))) > 1}
where B(0,7) = {z € R™ : ||z|| < r} is the closed ball of radius

around 0.
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Successive
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Sucessive minima (2)

Definition 13b (successive minima)

Let A = L(B) be a lattice of rank n.

Fori € {1,...,n}, we define the i*" successive minimum as the
smallest » > 0 such that A contains at least 7 linearly independent
vectors of length bounded by r,

Ai(A) = inf{r € Ry : dim(span(A N B(0,r))) > i}

where B(0,r) = {& € R™ : ||z|| < r} is the closed ball of radius r
around 0.
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An example of successive minima

(0:5,3) (1.5,3)
L ] [ ] L ] L] [ ] L]
b
# b[
L L ] L J L L L
(0,0
[ ] L ] L ] L] ® [ ] ® L]
. 1/2 3/2
Conﬂder[ﬁ( 3 3

)
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An example of successive minima

Start to grow a circle at the origin until you meet a point to find A;.
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Rough lower bound (1)

Theorem 14

Let B be a rank n lattice basis and let B* be its Gram-Schmidt
orthogonalization. Then:

M(A)> min 5] > 0.

)

Thus, for any two non-equal lattice points z,y € A

_ > i i
Iz —y|| = min 57| >0
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Rough lower bound (2)

Proof of theorem 14:

Let,
Bz € L(B) \ {0}

be a generic lattice vector where z € Z™ \ {0}.

Let
k =max{k € {1,...,n} : xx # 0}.

Then, by orthogonality

| < Bz, by > | = > < biwi, by >| = |z < by, by > | = |15

i<k
By Cauchy-Schwartz,

| < Bz, b > | < || Bz|| by ]l.
Since |zk| > 1 and ||b%|| # O,

([l < || B]|.
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The successive minima of a lattice are achieved.
Parc Vi In other words, for every 1 <4 < n, there exists a vector v; € A
minima with ”UZH = )\Z(A)
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achieved (2)

Proof of theorem 14:

® |et,
S =B(0,2\1(A)) ={z € R™ : ||z| < 2A1(A)}.
® By definition of the minimal distance, there is at least one lattice
point x € S.
® Thus,
A (A) =inf{|lz|| : 2 € AN S\ {0}}.

28 ® Consider a small sphere of radius $ A1 (A) around each lattice point:

Successive
minima

B (:c, %AMA)) for all x € A.
® Since the minimal distance between lattice points is A1 (A),
B (m, %/\1(1\)) N B (y, %)\1(/\)) =Qforallz#yeA.
® Forallz e SNA,

B (m %Al(A)> C B(0,3\ (M) = S
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Successive
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The successive minima are
achieved (3)

® Notice that:

vol (B (1’ %AﬂA))) —c, (%Al(A))n and

v0l(0,3A1(A)) = Cr (3A1(A))"

® Hence, there are at most 6™ lattice points in S. So,

AL(A) = inf{]|z] s 2 € AN S\ {0}} = min{||z] sz € AN S\ {0}}.

® By a similar argument, one proves the theorem for the other
successive minima.
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Part VI:

Minkowski's theorems
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Part VI:
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theorems

Blichfeld's theorem (1)

Theorem 16 (Blichfeld)

Let A = £(B) C R” be a full-rank lattice and let S C R" be
a subset with vol(S) > det(A). Then, there exist two nonequal
points z1, 25 € S such that z; — 25 € A.
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Blichfeld example

Consider the lattice A and S C R™ with vol(S) > det(A).
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Blichfeld example

Then, we want to find 21, 22 € S such that z; — 22 € A.
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Blichfeld example

A

To do so, consider R? partitioned by the lattice.
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Blichfeld example

Reduce all of R? to the fundamental
parallelepiped and look for intersections,
this gives us the two points we are looking for.
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Blichfeld's theorem (2)

Proof of theorem 16:

z+PB)={z+y:y € P(B)}
For any x € A, define
Sy = SN (x+ P(B)).
Since z 4+ P(B) partitions R", it does so with S. Hence,
Se NSy =0 (Vo #y) and S = UzenSs.

This implies that

vol(S) = Z vol(Sz).

zEA

Translate the pieces S, into the fundamental parallelepiped by
defining A

Sz =Sz —x.
Clearly S, C P(B) and vol(S.,).

® As x ranges over all of A, we can partition R™ by considering the sets
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® Furthermore,

Z vol(S,) = Z vol(Sz) = vol(S) > vol(P(B)).

TEA

Blichfeld's theorem (3)

zEA

Thus, there must exist z # y € A such that

S, NSy, #0.

® |letz e gz N gy Then,

® Since z,y € A,

z+x €S, CSandz+ye S, CS.

(z+2)—(2+y)=x—y €A.
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(1)

A subset S C R" is called:
@ centrally-symmetric if for any © € S we also have —z € S,
@® convex if for any z,y € S we also have pz + (1 — p)y € S
for all € [0,1].

Part VI:
Minkowski's
theorems

Theorem 18 (Minkowski - convex body)

Let A be a full-rank lattice of rank n. Then, any centrally-
symmetric convex set S with vol(S) > 2"det(A) contains a
non-zero lattice point.
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Minkowski convex body example

Since vol(S) > 4 det(A):
vol(35) = tvol(S) > det(A).
Blichfeld's theorem implies the existence of a non-zero lattice
point z1 — z2 which happens to be also in S.
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(2)

Proof of theorem 18:

® Define 1
S':§S:{a:€]R”:2:r€S}.

Clearly

vol(S) = 27 "vol(S) > det(A).
Blichfeld's theorem implies that
321 # 22 € S such that 0 # 21 — 2z € A.

® By definition,
Part VI: 2217 222 c S

Minkowski's

theorems . . .
® Since S is centrally-symmetric,

—2z9 € S.

Since S is convex,
221 — 222

=21 — S.
2 21 — 22 €
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Minkowski's first theorem (1)

Theorem 19 (Minkowski - 1)

For any full-rank lattice A of rank n,
A (A) < v/n(det(A))/".

V/n(det(A))Y/™ is called the Minkowski bound.
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Minkowski's first theorem (2)

Proof of theorem 19:

Consider the open sphere B(0, A\1(A)) centered at 0 of radius A;(A).

By definition, B(0, A1(A)) is centrally-symmetric and convex but
contains no non-zero lattice points.

Minkowski's convex body theorem implies that
vol(B(0, A1(A))) < 2™ det(A).
Note that B(0, A1(A)) contains a cube of side length L\/%A) and so

M)
(—ﬁ ) < wol(B(0, A (A)).

Thus,
A (A) < Va(det(A)) /"
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Minkowski's first theorem (3)

Remarks 19

© Using the fact that vol(B(0, i (A))) = g (A1(A))", one can
2

obtain an upper bound for A\1(A) that is a lot tighter than
Vn(det(A))/™.

@® )\i1(A) can be very small compared to the Minkowski bound.
Indeed, consider in dimension 2 the lattice given by (1,0)” and

(0, N)T where N € N\ {0}. Then, the Minkovsky bound is v/2v/ N
but A1 (A) = 1.

© )\i(A) can be very close to the Minkowski bound.
Indeed, one can show, that in any dimension, there exists a lattice
with shortest vector at least ¢y/n(det(A))'/™ for some constant c.

@ It has been shown that O(y/(n)) det(A)'/™ is the best upper bound
one can possibly prove.

@ The term (det(A))/™ makes sure that the expressions scale properly.
Indeed, A1(cA) = cAi(A) and (det(cA))/™ = ¢(det(A))1/™.
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Minkowski's second theorem (1)

Theorem 20 (Minkowski - 2)

For any full-rank lattice A of rank n,

@ 1/n
<H MA)) < Vn(det(A))'/".
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Minkowski's second theorem (2)

Proof of theorem 20:

Let x1,...,xn € A be linearly independent vectors achieving the
successive minima (i.e. ||z:]| = Ai(A)).

Let z7, ..., z;, be their Gram-Schmidt orthogonalization.

Consider the open ellipsoid T with axes z7, ..., z;, and lengths
A(A), s An(A),

n * 2
T{“R S () <1}'
i=1
Let y € A and let
k=max{k € {1,....,n}: |yl = A(A)}.

Then,
y € span(z7,...,x) = span(z1, ..., Tk),

else z1,...,zk,y would be k + 1 linearly independent vectors of length
less than Ax41(A).
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® Thus,

® Hence,

Minkowski's second theorem (3)

>

i=1

(

<y, ri >

[l ([ A (A)

:

\%

1
(Ae(A))?
[lylI”
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Minkowski's second theorem (4)

® By Minkowski's convex body theorem,
vol(T) > 2" det(A).

® On the other hand, by the volume formula for ellipsoids,

iy ([ saonn > ({20 (2)'

® Combining both bounds yields

n 1/n
(H >\¢(A)> < V/n(det(A))/"™.
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Minkowski's second theorem (5)

Remarks 21

@ Using the fact that vol(B(0,1)) = one can obtain a better

1/n

/2
TG+’

upper bound for the geometric mean (T]\, Ai(A))
@ The two previous results can easily be converted for any other norm.

© The two previous results can be adapted to lattices of general rank.
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Shortest vector problem

Search SVP

Given a lattice basis B € Z™*",
find v € £L(B) such that 0 # |[v|| = A1 (£L(B)).

Optimization SVP

Given a lattice basis B € Z™*™,
find A1 (L(B)).

Decisional SVP

Given a lattice basis B € Z™*™ and a rational r € Q,
determine whether A1 (£(B)) < r or not.

Surprisingly:

Search SVP < Optimization SVP < Decisional SVP
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Approximate shortest vector

problem
Let v > 1.

Search SVP,

Given a lattice basis B € Z™*",
find v € £(B) such that 0 # ||[v|| < yA1(L(B)).

Optimization SVP,

Given a lattice basis B € Z™*",
find d such that d < A\1(£L(B)) < ~d.

Promise SVP., or GapSVP,

Given a lattice basis B € Z™*™ and a rational r € Q,
determine whether (B, r) belongs to the YES instance (=X1(£(B)) < r)
or to the NO instance (A1 (£(B)) > vr).

Surprisingly:
Search SVP, = Optimization SVP, < Promise SVP,
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Closest vector problem

Let v > 1.

Search CVP,

Given a lattice basis B € Z™*™ and a vector t € Z™,
find v € L(B) such that ||v —¢|| < ydist(t, L(B)).

Optimization CVP,

Given a lattice basis B € Z™*™ and a vector t € Z™,
find d such that d < dist(t, L(B)) < vd.

Promise CVP., or GapCVP,

Given a lattice basis B € Z™*™, a rational r € Q and a vector t € Z™,
determine whether (B, r,t) belongs to the YES instance
(=dist(t, L(B)) < r) or to the NO instance (= dist(t, L(B)) > r).
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Miscellaneous lattice problems

SIVP

Given a lattice basis B € Z™*",
find n linearly independent vectors v1, ..., v, € L(B) such that
0 # fluill < vA(L(B)).

Bounded distance decoding

Given a lattice basis B € Z™*™ and a vector t € Z™ such that
dist(t, L(B)) < W for a given n € N,
find v € £(B) such that |jv — t|| < 2HELE)))

n

Covering radius problem

Given a lattice basis B € Z™*",
find the largest distance from any vector to the lattice.
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Remarks about lattice problems

Remarks 21

@ Many lattice problems are conjectured to be hard!

@ Finding the shortest vector is hard however, finding a short vector is

manageable using different algorithms.

© Many cryptographic schemes based on lattice problems seem to be
secure and are even conjectured to be quantum secure.

63/64



Introduction
to lattices

Barthel Jim References

References:

® Oded Regev's course notes " Lattices in Computer Science” (from
2004) from the Tel Aviv University that are accessible via the link:
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/
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