Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Introduction to lattices

Barthel Jim

May 24, 2019

Supported by the Luxembourg National Research Fund through grant PRIDE15/10621687/SPsquared.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

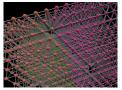
Part V: Successive minima

Part VI: Minkowski's theorems

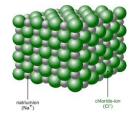
Part VII: Computationa problems

References:

What is a lattice?



http://www.gracebyte.com/lattice/ images/ss_2.jpg



https://docplayer.nl/19815420-Hoofdstuk -4-atoombouw-en-periodiek-systeem.html

http://www.aamt.edu.au/digital -resources/R10266/index.html

Barthel Jim

Part I: Definition

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Table of contents

1 Part I: Definitions

2 Part II: Comparing lattices

3 Part III: Gram-Schmidt Orthogonalization

4 Part IV: Determinant

5 Part V: Successive minima

6 Part VI: Minkowski's theorems

Part VII: Computational problems

8 References:

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Part I:

Definitions

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

The formal definition of a lattice

Definition (lattice)

A *lattice* is a discrete additive subgroup of \mathbb{R}^n . In other words, a *lattice* is a subset $\Lambda \subseteq \mathbb{R}^n$ satisfying the following properties:

- 1 (Subgroup property) Λ is closed under addition and subtraction.
- **2** (Discreteness) There is an $\epsilon > 0$ such that any two distinct lattice points $x \neq y \in \Lambda$ are at distance at least $||x y|| \ge \epsilon$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Constructing lattices

Definition 1 (lattice generated by linearly independent vectors)

Let $b_1, ..., b_n \in \mathbb{R}^m$ be linearly independent vectors. Let $B = [b_1, ..., b_n]$.

1 The lattice generated by B is the set

$$\mathcal{L}(B) = \{ Bx \in \mathbb{Z}^m : x \in \mathbb{Z}^n \} = \left\{ \sum_{i=1}^n x_i b_i : x_i \in \mathbb{Z} \right\}.$$

2 The matrix B is called the *basis* of the lattice L(B).
3 We call n the *rank* of L(B) and m the *dimension* of L(B).
4 If n = m, then L(B) is called a *full rank* lattice.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

(0, 1) (1, 1) (2, 1) . . ٠ . (0, 0) (0, 0 (1, 0) • A basis of \mathbb{Z}^2 Another basis of \mathbb{Z}^2 ٠ . ٠ 0 . (1, 1) . • . (2, 0)(0, 0)(0, 0)Not a basis of \mathbb{Z}^2 Not a full-rank lattice

Examples of lattices

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Definitions emerging from lattices

Definition 2

Let B be any lattice basis and let $\mathcal{L}(B)$ be the corresponding lattice.

1 The span of $\mathcal{L}(B)$ is the vector space generated by B:

 $span(\mathcal{L}(B)) = span(B) = < B > = \{Bx \in \mathbb{R}^m : x \in \mathbb{R}^n\}$

2 The fundamental parallelepiped of the lattice basis B is given by

$$P(B) = \{Bx \in \mathbb{R}^m : x \in \mathbb{R}^n, \ 0 \le x_i < 1 \quad \forall 0 \le i \le n\}$$
$$= \left\{\sum_{i=1}^n x_i b_i : 0 \le x_i < 1\right\}.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

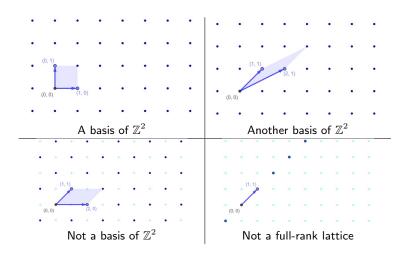
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

More examples



Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Part II:

Comparing lattices

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

A lattice and its possible bases (1)

Lemma 3

Let Λ be a lattice of rank n, and let $b_1, ..., b_n \in \Lambda$ be linearly independent lattice vectors.

Then, $b_1, ..., b_n$ form a basis of $\Lambda \Leftrightarrow P(b_1, ..., b_n) \cap \Lambda = \{0\}.$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

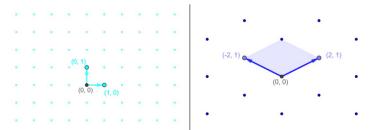
Part V: Successive minima

Part VI: Minkowski's theorems

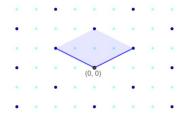
Part VII: Computationa problems

References:

A lattice and its possible bases (2)



We compare both lattices by superposing them:



Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

A lattice and its possible bases (3)

Proof of lemma 3:

1) $b_1,...,b_n$ form a basis of $\Lambda \Rightarrow P(b_1,...,b_n) \cap \Lambda = \{0\}$:

• By definition,

$$\Lambda = \left\{ \sum x_i b_i : x_i \in \mathbb{Z} \right\}.$$

• Furthermore,

$$P(b_1, ..., b_n) = \left\{ \sum x_i b_i : 0 \le x_i < 1 \right\}.$$

• Hence,

$$P(b_1,...,b_n) \cap \Lambda = \{0\}.$$

Barthel Jim

Part I: Definition

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

A lattice and its possible bases (4)

2) $P(b_1,...,b_n) \cap \Lambda = \{0\} \Rightarrow b_1,...,b_n$ form a basis of Λ :

1 Since $b_1, ..., b_n \in \Lambda$, $\mathcal{L}(b_1, ..., b_n) \subseteq \Lambda$.

• Since Λ is a lattice of rank n and $b_1, ..., b_n$ are n linearly independent lattice vectors of Λ ,

$$\forall x \in \Lambda : x = \sum x_i b_i \ (x_i \in \mathbb{R}).$$

Let

2

$$x' = \sum \lfloor x_i \rfloor \, b_i \in \Lambda.$$

Let

$$x'' = x - x' = \sum (x_i - \lfloor x_i \rfloor) b_i$$

- Since Λ is closed under addition and subtraction

$$x'' \in \Lambda$$
.

• Since
$$0 \le x_i - \lfloor x_i \rfloor < 1$$
 for all $1 \le i \le n$, $x'' \in P(b_1,...,b_n).$

Barthel Jim

Part I: Definition

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

A lattice and its possible bases (4)

2) $P(b_1,...,b_n) \cap \Lambda = \{0\} \Rightarrow b_1,...,b_n$ form a basis of Λ : **1** Since $b_1,...,b_n \in \Lambda$, $\mathcal{L}(b_1,...,b_n) \subset \Lambda$.

• Since Λ is a lattice of rank n and $b_1, ..., b_n$ are n linearly independent lattice vectors of Λ ,

$$\forall x \in \Lambda : x = \sum x_i b_i \ (x_i \in \mathbb{R}).$$

Let

0

$$x' = \sum \lfloor x_i \rfloor b_i \in \Lambda.$$

Let

$$x'' = x - x' = \sum (x_i - \lfloor x_i \rfloor) b_i \in P(b_1, ..., b_n) \cap \Lambda.$$

• Since
$$P(b_1, ..., b_n) \cap \Lambda = \{0\}, x'' = 0.$$

• Since $b_1, ..., b_n$ are linearly independent,

$$x_i = \lfloor x_i \rfloor \text{ for all} 1 \leq i \leq n.$$

In particular x_i is an integer for all $1 \le i \le n$.

• Hence, $x \in \mathcal{L}(b_1, ..., b_n)$ and so

$$\Lambda \subseteq \mathcal{L}(b_1, ..., b_n).$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Equivalence of bases (1)

Definition 4 (equivalence of lattices)

Let B_1, B_2 be lattice bases. We say that B_1 is *equivalent* to B_2 if and only if $\mathcal{L}(B_1) = \mathcal{L}(B_2)$.

Lemma 5

Two bases B_1, B_2 of rank n are equivalent if and only if there exists an unimodular matrix U (i.e. U is a square matrix with integer coefficients and $det(U) = \pm 1$) such that $B_2 = B_1U$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmid Orthogonalization

Part IV: Determinant

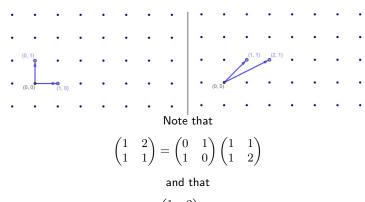
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Equivalence of bases (2)



$$\det \begin{pmatrix} 1 & 2\\ 1 & 1 \end{pmatrix} = -1.$$

Barthel Jim

Part I: Definition

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Equivalence of bases (3)

Proof of lemma 5:

1) B_1, B_2 are equivalent $\Rightarrow \exists U$ unimodular such that $B_2 = B_1 U$:

• Since B_1 and B_2 are equivalent,

$$\mathcal{L}(B_1) = \mathcal{L}(B_2).$$

• Since $\forall 1 \leq i \leq n : b_i \in B_2$,

$$b_i \in \mathcal{L}(B_2) = \mathcal{L}(B_1).$$

- By definition of the lattice $\mathcal{L}(B_1)$, $\exists u_i \in \mathbb{Z}^n$ such that $b_i = B_1 u_i$.
- Let $U = (u_1, ..., u_n)$. Then clearly, $B_2 = B_1 U.$
- Similarly, one can construct $V \in \mathbb{Z}^{n \times n}$ such that

$$B_1 = B_2 V.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Equivalence of bases (3)

Proof of lemma 5:

1) B_1, B_2 are equivalent $\Rightarrow \exists U$ unimodular such that $B_2 = B_1 U$:

• We deduce that $B_2 = B_2 V U$ and so

$$B_2(Id - VU) = 0.$$

• Since the column vectors of B_2 are linearly independent, its inverse exists and so

$$Id = VU.$$

• Since $1 = \det(Id) = \det(V) \det(U)$ and U, V are integer matrices,

$$\det(U) = \pm 1.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Equivalence of bases (4)

2) $\exists U$ unimodular such that $B_2 = B_1 U \Rightarrow B_1, B_2$ are equivalent:

• Since $B_2 = B_1 U$ where $B_2 = (b_1, ..., b_n)$ and $U = (u_1, ..., u_n)$,

$$\forall 1 \le i \le n : \ b_i = B_1 u_i.$$

• Since U is unimodular, $b_i \in \mathcal{L}(B_1)$ and hence

$$\mathcal{L}(B_2) \subseteq \mathcal{L}(B_1).$$

• Since any unimodular matrix has an inverse which is also unimodular, we first deduce that

$$B_1 = B_2 U^{-1}.$$

and then, the same argument as above yields

$$\mathcal{L}(B_1) \subseteq \mathcal{L}(B_2).$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Deducing one basis from another one

Corollary 6

Two bases are equivalent if and only if one can be obtained from the other by the following operations on columns:

```
1) b_i \leftarrow b_i + kb_j for some k \in \mathbb{Z} and i \neq j,
```

$$2 \ b_i \leftrightarrow b_j,$$

$$\mathbf{3} \ b_i \leftarrow -b_i.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Part III:

Gram-Schmidt Orthogonalization

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Gram-Schmidt orthogonalization

Definition 7 (Gram-Schmidt orthogonalization)

Given any sequence of n linearly independent vectors $b_1, ..., b_n \in \mathbb{R}^m$, we define their *Gram-Schmidt orthogonalization* as the sequence of vectors $b_1^*, ..., b_n^* \in \mathbb{R}^m$ defined recursively by

$$b_i^* = b_i - \sum_{j=1}^{i-1} \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle} b_j^*.$$

In other words, b_i^\ast is the component of b_i orthogonal to $b_1^\ast,...,b_{i-1}^\ast.$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

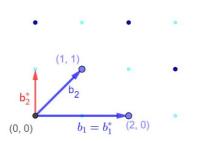
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

An example of Gram-Schmidt



The vector b_2^* does not belong to the lattice.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Properties of Gram-Schmidt orthogonalization

Remark 8

Let $b_1, ..., b_n \in \mathbb{R}^m$ be *n* linearly independent vectors and let $b_1^*, ..., b_n^* \in \mathbb{R}^m$ be their Gram-Schmidt orthogonalization.

1 (Orthogonality) For all $i \neq j$ we have $\langle b_i^*, b_j^* \rangle = 0$.

2 (Basis) For all $1 \le i \le n$,

 $span(b_1, ..., b_i) = span(b_1^*, ..., b_i^*).$

Note that in general $\mathcal{L}(b_1,...,b_n) \neq \mathcal{L}(b_1^*,...,b_n^*)$ (most of the time $b_i^* \notin \mathcal{L}(b_1,...,b_n)$) and that a lattice does not always admit an orthogonal basis!

(Order) The order of the Gram-Schmidt procedure matters.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

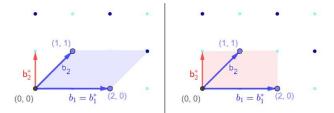
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Volume of the fundamental parallelepiped



$$vol(P(b_1, b_2)) = ||b_1^*|| ||b_2^*|| = 2$$

Remark 9

1

Let $b_1,...,b_n \in \mathbb{R}^m$ be n linearly independent vectors and let $b_1^*,...,b_n^* \in \mathbb{R}^m$ be their Gram-Schmidt orthogonalization. Then:

$$vol(P(b_1,...,b_n)) = \prod_{i=1}^n ||b_i^*||.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Part IV:

Determinant

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Determinant

Definition 10 (determinant of lattices)

Let $\Lambda = \mathcal{L}(B)$ be a lattice of rank n. We define the determinant of Λ (denoted by $\det(\Lambda)$) to be the n-dimensional volume of the fundamental parallelepiped P(B) associated to B. In symbols:

$$\det(\Lambda) = vol(P(B)) = \prod_{i=1}^{n} ||b_i^*||.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Properties of the determinant (1)

Proposition 11

For any lattice basis $B \in \mathbb{R}^{n \times m}$

- $\texttt{1} \det(\mathcal{L}(B)) = \sqrt{\det(B^T B)},$
- 2 In particular if $B \in \mathbb{R}^{n \times n}$ is a (non-singular) square matrix, then $\det(\mathcal{L}(B)) = |\det(B)| = d$ and $d\mathbb{Z}^n \subseteq \mathcal{L}(B)$.
- 3 The determinant is independent of the basis.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Properties of the determinant (2) <u>Proof of proposition 11:</u>

1) $\det(\mathcal{L}(B)) = \sqrt{\det(B^T B)}$:

• By the Gram-Schmidt orthogonalization procedure, we know that

$$B = B^* M$$

where M is an upper triangular matrix with 1's on the diagonal and $\frac{<b_i, b_j^*>}{< b_j^*, b_j^*>} \|b_j^*\|$ for all j < i.

• Hence,

 $\sqrt{\det(B^TB)} = \sqrt{\det(M^T(B^*)^TB^*M)} = \sqrt{\det(M^T)\det((B^*)^TB^*)\det(M)}.$

• Since M is upper triangular and has only 1's at its diagonal, $det(M) = det(M^{T}) = 1.$

Furthermore by orthogonality of the columns of
$$B^*$$

$$\det((B^*)^T B^*) = \prod_{i=1}^n (\|b_i^*\|)^2 = (\det(\mathcal{L}(B)))^2$$

• Since $\det(\mathcal{L}(B)) \ge 0$ by definition,

$$\sqrt{\det((B^*)^T B^*)} = \det(\mathcal{L}(B)).$$

Barthel Jim

Part I: Definition

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Properties of the determinant (3)

2) If $B \in \mathbb{R}^{n \times n}$ is a (non-singular) square matrix, then $\det(\mathcal{L}(B)) = |\det(B)| = d$ and $d\mathbb{Z}^n \subseteq \mathcal{L}(B)$.

• Since B is a square matrix,

$$\det(\mathcal{L}(B)) = \sqrt{\det(B^T B)} = \sqrt{(\det(B))^2} = |\det(B)|.$$

• Let
$$v = dy \in d\mathbb{Z}^n$$
 where $y \in \mathbb{Z}^n$

• Since B is non-singular, there is

$$x = B^{-1}dy \in \mathbb{R}^n.$$

• By Cramer's rule:

$$x_{i} = \frac{\det((b_{1}, ..., b_{i-1}, dy, b_{i+1}, ..., b_{n}))}{\det(B)}$$

= $\pm \det((b_{1}, ..., b_{i-1}, dy, b_{i+1}, ..., b_{n})) \in \mathbb{Z}$

• Thus,

 $x \in \mathbb{Z}^n$.

Hence,

$$v = Bx \in \mathcal{L}(B).$$

Barthel Jim

Part I: Definition

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Properties of the determinant (4)

3) The determinant is independent of the basis.

• Let B_1,B_2 be equivalent bases. Then, there is a unimodular matrix U such that

$$B_2 = B_1 U.$$

Thus,

$$det(\mathcal{L}(B_2)) = \sqrt{det(B_2^T B_2)}$$
$$= \sqrt{det(U^T B_1^T B_1 U)}$$
$$= \sqrt{(det(U))^2 det(B_1^T B_1)}$$
$$= \sqrt{det(B_1^T B_1)}$$
$$= det(\mathcal{L}(B_1))$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Remarks about the determinant

Remark 12

For any lattice basis $B \in \mathbb{R}^{n \times m}$

1 (Hadamar inequality)

$$\det(\mathcal{L}(B)) = \prod_{i=1}^{n} \|b_i^*\| \le \prod_{i=1}^{n} \|b_i\|$$

(since $||b_i^*|| \le ||b_i||$).

② Geometrically, the determinant represents the inverse of the density of lattice points in space (e.g., the number of lattice points in a large and sufficiently regular region of space A should be approximately equal to the volume of A divided by the determinant.)

Small determinant = Dense lattice

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmid Orthogonalization

Part IV: Determinant

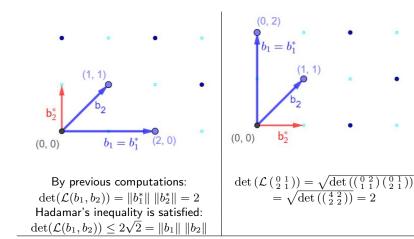
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

An example of a determinant



Note

$$\det\left(\mathcal{L}\left(\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right)\right) = 1$$

Hence, $\mathcal{L}\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$ (i.e. dark and light blue points) is denser than $\mathcal{L}\begin{pmatrix} 0 & 1\\ 2 & 1 \end{pmatrix}$.

32 / 64

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Part V:

Successive minima

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Sucessive minima (1)

Definition 13a (minimum distance)

Let $\Lambda=\mathcal{L}(B)$ be a lattice of rank n.The minimum distance λ_1 of Λ is the smallest distance between any two lattice points:

$$\lambda_1(\Lambda) = \inf\{\|x - y\| : x, y \in \Lambda, x \neq y\}.$$

Equivalently, the minimum distance can be defined as the shortest non-zero vector of $\Lambda:$

$$\lambda_1(\Lambda) = \inf\{\|v\| : v \in \Lambda \setminus \{0\}\}.$$

Equivalently, the minimum distance is the smallest r>0 such that Λ contains at least one vector of length bounded by r,

 $\lambda_1(\Lambda) = \inf\{r \in \mathbb{R}_{>0} : \dim(span(\Lambda \cap B(0, r))) \ge 1\}$

where $B(0,r)=\{x\in \mathbb{R}^m: \|x\|\leq r\}$ is the closed ball of radius r around 0.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Sucessive minima (2)

Definition 13b (successive minima)

Let $\Lambda = \mathcal{L}(B)$ be a lattice of rank n. For $i \in \{1, ..., n\}$, we define the i^{th} successive minimum as the smallest r > 0 such that Λ contains at least i linearly independent vectors of length bounded by r,

$$\lambda_i(\Lambda) = \inf\{r \in \mathbb{R}_{>0} : \dim(span(\Lambda \cap B(0, r))) \ge i\}$$

where $B(0,r)=\{x\in \mathbb{R}^m: \|x\|\leq r\}$ is the closed ball of radius r around 0.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

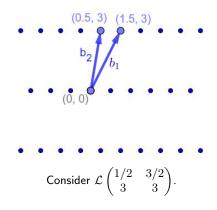
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

An example of successive minima



Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

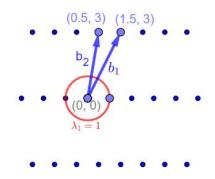
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

An example of successive minima



Start to grow a circle at the origin until you meet a point to find λ_1 .

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmid Orthogonalization

Part IV: Determinant

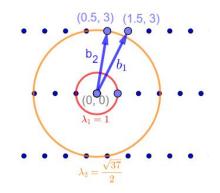
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

An example of successive minima



Keep growing the circle until you meet a second point that lies not on the line given by the minimal vector to find λ_2 .

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Rough lower bound (1)

Theorem 14

Let B be a rank n lattice basis and let B^{\ast} be its Gram-Schmidt orthogonalization. Then:

$$\lambda_1(\Lambda) \ge \min_{i=1,\dots,n} \|b_i^*\| > 0.$$

Thus, for any two non-equal lattice points $x, y \in \Lambda$

$$||x - y|| \ge \min_{i=1,\dots,n} ||b_i^*|| > 0$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Rough lower bound (2)

Proof of theorem 14:

• Let,

$$Bx \in \mathcal{L}(B) \setminus \{0\}$$

be a generic lattice vector where $x \in \mathbb{Z}^n \setminus \{0\}$.

• Let

$$k = \max\{k \in \{1, ..., n\} : x_k \neq 0\}.$$

• Then, by orthogonality

$$|\langle Bx, b_k^* \rangle| = \left|\sum_{i \le k} \langle b_i x_i, b_k^* \rangle\right| = |x_k \langle b_k, b_k^* \rangle| = |x_k| ||b_k^*||^2.$$

• By Cauchy-Schwartz,

$$| < Bx, b_k^* > | \le ||Bx|| ||b_k^*||.$$

• Since
$$|x_k| \ge 1$$
 and $||b_k^*|| \ne 0$,

 $\|b_k^*\| \le \|Bx\|.$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

The successive minima are achieved (1)

Theorem 15

The successive minima of a lattice are achieved. In other words, for every $1 \leq i \leq n$, there exists a vector $v_i \in \Lambda$ with $||v_i|| = \lambda_i(\Lambda)$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

The successive minima are achieved (2)

Proof of theorem 14:

• Let,

 $S = B(0, 2\lambda_1(\Lambda)) = \{ x \in R^m : ||x|| < 2\lambda_1(\Lambda) \}.$

- By definition of the minimal distance, there is at least one lattice point $x \in S$.
- Thus,

$$\lambda_1(\Lambda) = \inf\{\|x\| : x \in \Lambda \cap S \setminus \{0\}\}.$$

• Consider a small sphere of radius $\frac{1}{2}\lambda_1(\Lambda)$ around each lattice point:

$$B\left(x, \frac{1}{2}\lambda_1(\Lambda)\right)$$
 for all $x \in \Lambda$.

• Since the minimal distance between lattice points is $\lambda_1(\Lambda)$,

$$B\left(x, \frac{1}{2}\lambda_1(\Lambda)\right) \cap B\left(y, \frac{1}{2}\lambda_1(\Lambda)\right) = \emptyset \text{ for all } x \neq y \in \Lambda.$$

• For all $x \in S \cap \Lambda$,

$$B\left(x,\frac{1}{2}\lambda_1(\Lambda)\right) \subseteq B(0,3\lambda_1(\Lambda)) = S'.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

The successive minima are achieved (3)

Notice that:

$$vol\left(B\left(x,\frac{1}{2}\lambda_1(\Lambda)\right)\right) = C_n\left(\frac{1}{2}\lambda_1(\Lambda)\right)^n$$
 and
 $vol(0,3\lambda_1(\Lambda)) = C_n(3\lambda_1(\Lambda))^n$

• Hence, there are at most 6^n lattice points in S. So,

 $\lambda_1(\Lambda) = \inf\{\|x\| : x \in \Lambda \cap S \setminus \{0\}\} = \min\{\|x\| : x \in \Lambda \cap S \setminus \{0\}\}.$

 By a similar argument, one proves the theorem for the other successive minima.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Part VI:

Minkowski's theorems

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Blichfeld's theorem (1)

Theorem 16 (Blichfeld)

Let $\Lambda = \mathcal{L}(B) \subseteq \mathbb{R}^n$ be a full-rank lattice and let $S \subseteq \mathbb{R}^n$ be a subset with $vol(S) > \det(\Lambda)$. Then, there exist two nonequal points $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

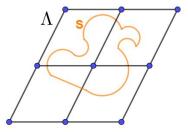
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Blichfeld example



Consider the lattice Λ and $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

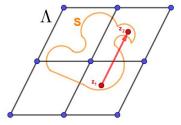
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Blichfeld example



Then, we want to find $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmid Orthogonalization

Part IV: Determinant

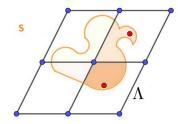
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Blichfeld example



To do so, consider \mathbb{R}^2 partitioned by the lattice.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

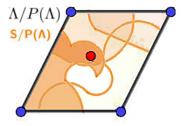
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Blichfeld example



Reduce all of \mathbb{R}^2 to the fundamental parallelepiped and look for intersections, this gives us the two points we are looking for.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Blichfeld's theorem (2)

• As x ranges over all of $\Lambda,$ we can partition \mathbb{R}^n by considering the sets $x+P(B)=\{x+y:y\in P(B)\}.$

• For any $x \in \Lambda$, define

Proof of theorem 16:

$$S_x = S \cap (x + P(B)).$$

• Since x + P(B) partitions \mathbb{R}^n , it does so with S. Hence,

$$S_x \cap S_y = \emptyset \; (\forall x \neq y) \text{ and } S = \cup_{x \in \Lambda} S_x.$$

This implies that

$$vol(S) = \sum_{x \in \Lambda} vol(S_x).$$

• Translate the pieces ${\cal S}_x$ into the fundamental parallelepiped by defining

$$\hat{S}_x = S_x - x.$$

Clearly $\hat{S}_x \subseteq P(B)$ and $vol(S_x)$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Blichfeld's theorem (3)

Furthermore,

$$\sum_{x \in \Lambda} vol(\hat{S}_x) = \sum_{x \in \Lambda} vol(S_x) = vol(S) > vol(P(B)).$$

Thus, there must exist $x\neq y\in\Lambda$ such that

$$\hat{S}_x \cap \hat{S}_y \neq \emptyset.$$

• Let $z \in \hat{S_x} \cap \hat{S_y}$. Then,

$$z + x \in S_x \subseteq S$$
 and $z + y \in S_y \subseteq S$.

• Since $x, y \in \Lambda$,

$$(z+x) - (z+y) = x - y \in \Lambda.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's convex body theorem (1)

Definition 17

A subset $S \subseteq \mathbb{R}^n$ is called:

- **()** centrally-symmetric if for any $x \in S$ we also have $-x \in S$,
- 2 convex if for any $x, y \in S$ we also have $\mu x + (1 \mu)y \in S$ for all $\mu \in [0, 1]$.

Theorem 18 (Minkowski - convex body)

Let Λ be a full-rank lattice of rank n. Then, any centrallysymmetric convex set S with $vol(S) > 2^n \det(\Lambda)$ contains a non-zero lattice point.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

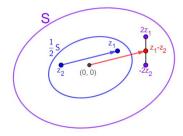
Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski convex body example



Since $vol(S) > 4 \det(\Lambda)$: $vol(\frac{1}{2}S) = \frac{1}{4}vol(S) > \det(\Lambda)$. Blichfeld's theorem implies the existence of a non-zero lattice point $z_1 - z_2$ which happens to be also in S.

Barthel Jim

Part I: Definition

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's convex body theorem (2)

Proof of theorem 18:

• Define

$$\hat{S} = \frac{1}{2}S = \{x \in \mathbb{R}^n : 2x \in S\}.$$

Clearly

$$vol(\hat{S}) = 2^{-n} vol(S) > \det(\Lambda).$$

• Blichfeld's theorem implies that

$$\exists z_1
eq z_2 \in \hat{S}$$
 such that $0
eq z_1 - z_2 \in \Lambda$.

By definition,

$$2z_1, 2z_2 \in S.$$

• Since S is centrally-symmetric,

$$-2z_2 \in S.$$

Since S is convex,

$$\frac{2z_1 - 2z_2}{2} = z_1 - z_2 \in S.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's first theorem (1)

Theorem 19 (Minkowski - 1)

For any full-rank lattice Λ of rank n,

$$\lambda_1(\Lambda) \leq \sqrt{n} (\det(\Lambda))^{1/n}$$

 $\sqrt{n}(\det(\Lambda))^{1/n}$ is called the *Minkowski bound*.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's first theorem (2)

Proof of theorem 19:

- Consider the open sphere $B(0, \lambda_1(\Lambda))$ centered at 0 of radius $\lambda_1(\Lambda)$.
- By definition, $B(0, \lambda_1(\Lambda))$ is centrally-symmetric and convex but contains no non-zero lattice points.
- Minkowski's convex body theorem implies that

 $vol(B(0, \lambda_1(\Lambda))) \le 2^n \det(\Lambda).$

• Note that $B(0,\lambda_1(\Lambda))$ contains a cube of side length $rac{2\lambda_1(\Lambda)}{\sqrt{n}}$ and so

$$\left(\frac{2\lambda_1(\Lambda)}{\sqrt{n}}\right)^n \le vol(B(0,\lambda_1(\Lambda))).$$

Thus,

$$\lambda_1(\Lambda) \leq \sqrt{n} (\det(\Lambda))^{1/n}.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Minkowski's first theorem (3)

Remarks 19

- Using the fact that $vol(B(0, \lambda_1(\Lambda))) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} (\lambda_1(\Lambda))^n$, one can obtain an upper bound for $\lambda_1(\Lambda)$ that is a lot tighter than $\sqrt{n}(\det(\Lambda))^{1/n}$.
- 2 $\lambda_1(\Lambda)$ can be very small compared to the Minkowski bound. Indeed, consider in dimension 2 the lattice given by $(1,0)^T$ and $(0,N)^T$ where $N \in \mathbb{N} \setminus \{0\}$. Then, the Minkovsky bound is $\sqrt{2}\sqrt{N}$ but $\lambda_1(\Lambda) = 1$.
- 3 $\lambda_1(\Lambda)$ can be very close to the Minkowski bound. Indeed, one can show, that in any dimension, there exists a lattice with shortest vector at least $c\sqrt{n}(\det(\Lambda))^{1/n}$ for some constant c.
- 4 It has been shown that $O(\sqrt(n)) \det(\Lambda)^{1/n}$ is the best upper bound one can possibly prove.
- **5** The term $(\det(\Lambda))^{1/n}$ makes sure that the expressions scale properly. Indeed, $\lambda_1(c\Lambda) = c\lambda_1(\Lambda)$ and $(\det(c\Lambda))^{1/n} = c(\det(\Lambda))^{1/n}$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's second theorem (1)

Theorem 20 (Minkowski - 2)

For any full-rank lattice Λ of rank n,

$$\left(\prod_{i=1}^n \lambda_i(\Lambda)\right)^{1/n} \le \sqrt{n} (\det(\Lambda))^{1/n}.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's second theorem (2) <u>Proof of theorem 20:</u>

- Let x₁,...,x_n ∈ Λ be linearly independent vectors achieving the successive minima (i.e. ||x_i|| = λ_i(Λ)).
- Let $x_1^*, ..., x_n^*$ be their Gram-Schmidt orthogonalization.
- Consider the open ellipsoid T with axes $x_1^*,...,x_n^*$ and lengths $\lambda_1(\Lambda),...,\lambda_n(\Lambda),$

$$T = \left\{ y \in \mathbb{R}^n : \sum_{i=1}^n \left(\frac{\langle y, x_i^* \rangle}{\|x_i^*\| \lambda_i(\Lambda)} \right)^2 < 1 \right\}.$$

• Let $y \in \Lambda$ and let

$$k = \max\{k \in \{1, ..., n\} : ||y|| \ge \lambda_k(\Lambda)\}.$$

• Then,

$$y \in span(x_1^*, ..., x_k^*) = span(x_1, ..., x_k)$$

else $x_1,...,x_k,y$ would be k+1 linearly independent vectors of length less than $\lambda_{k+1}(\Lambda).$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's second theorem (3)

Thus,

$$\sum_{i=1}^{n} \left(\frac{\langle y, x_i^* \rangle}{\|x_i^*\|\lambda_i(\Lambda)} \right)^2 = \sum_{i=1}^{k} \left(\frac{\langle y, x_i^* \rangle}{\|x_i^*\|\lambda_i(\Lambda)} \right)^2$$
$$\geq \frac{1}{(\lambda_k(\Lambda))^2} \sum_{i=1}^{k} \left(\frac{\langle y, x_i^* \rangle}{\|x_i^*\|} \right)^2$$
$$= \frac{\|y\|^2}{(\lambda_k(\Lambda))^2}$$
$$\geq 1.$$

• Hence,

 $y \notin T$.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's second theorem (4)

• By Minkowski's convex body theorem,

$$vol(T) \ge 2^n \det(\Lambda).$$

• On the other hand, by the volume formula for ellipsoids,

$$vol(T) = \left(\prod_{i=1}^n \lambda_i(\Lambda)\right) vol(B(0,1)) \ge \left(\prod_{i=1}^n \lambda_i(\Lambda)\right) \left(\frac{2}{\sqrt{n}}\right)^n.$$

• Combining both bounds yields

$$\left(\prod_{i=1}^n \lambda_i(\Lambda)\right)^{1/n} \le \sqrt{n} (\det(\Lambda))^{1/n}.$$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

Minkowski's second theorem (5)

Remarks 21

Using the fact that $vol(B(0,1)) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$, one can obtain a better upper bound for the geometric mean $\left(\prod_{i=1}^{n} \lambda_i(\Lambda)\right)^{1/n}$.

2 The two previous results can easily be converted for any other norm.

3 The two previous results can be adapted to lattices of general rank.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Part VII:

Computational problems

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Shortest vector problem

Search SVP

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$, find $v \in \mathcal{L}(B)$ such that $0 \neq ||v|| = \lambda_1(\mathcal{L}(B))$.

Optimization SVP

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$, find $\lambda_1(\mathcal{L}(B))$.

Decisional SVP

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$ and a rational $r \in \mathbb{Q}$, determine whether $\lambda_1(\mathcal{L}(B)) \leq r$ or not.

Surprisingly:

Search SVP \Leftrightarrow Optimization SVP \Leftrightarrow Decisional SVP

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Let $\gamma \geq 1$.

Search SVP $_{\gamma}$

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$, find $v \in \mathcal{L}(B)$ such that $0 \neq ||v|| \leq \gamma \lambda_1(\mathcal{L}(B))$.

Optimization SVP_γ

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$, find d such that $d \leq \lambda_1(\mathcal{L}(B)) \leq \gamma d$.

Promise SVP $_{\gamma}$ or GapSVP $_{\gamma}$

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$ and a rational $r \in \mathbb{Q}$, determine whether (B, r) belongs to the YES instance $(=\lambda_1(\mathcal{L}(B)) \leq r)$ or to the NO instance $(\lambda_1(\mathcal{L}(B)) > \gamma r)$.

Approximate shortest vector

problem

Surprisingly:

 $\mathsf{Search}\ \mathsf{SVP}_{\gamma}\ \Rightarrow\ \mathsf{Optimization}\ \mathsf{SVP}_{\gamma}\ \Leftrightarrow\ \mathsf{Promise}\ \mathsf{SVP}_{\gamma}$

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Let $\gamma \geq 1$.

Search CVP_{γ}

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$ and a vector $t \in \mathbb{Z}^m$, find $v \in \mathcal{L}(B)$ such that $||v - t|| \leq \gamma dist(t, \mathcal{L}(B))$.

Optimization CVP_{γ}

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$ and a vector $t \in \mathbb{Z}^m$, find d such that $d \leq dist(t, \mathcal{L}(B)) \leq \gamma d$.

Promise CVP_γ or GapCVP_γ

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$, a rational $r \in \mathbb{Q}$ and a vector $t \in \mathbb{Z}^m$, determine whether (B, r, t) belongs to the YES instance $(=dist(t, \mathcal{L}(B)) \leq r)$ or to the NO instance $(=dist(t, \mathcal{L}(B)) > \gamma r)$.

Closest vector problem

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Miscellaneous lattice problems

SIVP

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$, find n linearly independent vectors $v_1, ..., v_n \in \mathcal{L}(B)$ such that $0 \neq ||v_i|| \leq \gamma \lambda_i(\mathcal{L}(B)).$

Bounded distance decoding

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$ and a vector $t \in \mathbb{Z}^m$ such that $dist(t, \mathcal{L}(B)) < \frac{\lambda_1(\mathcal{L}(B))}{n}$ for a given $n \in \mathbb{N}$, find $v \in \mathcal{L}(B)$ such that $||v - t|| < \frac{\lambda_1(dist(t, \mathcal{L}(B)))}{n}$.

Covering radius problem

Given a lattice basis $B \in \mathbb{Z}^{m \times n}$, find the largest distance from any vector to the lattice.

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computational problems

References:

Remarks about lattice problems

Remarks 21

- Many lattice problems are conjectured to be hard!
- 2 Finding the shortest vector is hard however, finding a short vector is manageable using different algorithms.
- **3** Many cryptographic schemes based on lattice problems seem to be secure and are even conjectured to be quantum secure.

References

Introduction to lattices

Barthel Jim

Part I: Definitions

Part II: Comparing lattices

Part III: Gram-Schmidt Orthogonalization

Part IV: Determinant

Part V: Successive minima

Part VI: Minkowski's theorems

Part VII: Computationa problems

References:

References:

- Oded Regev's course notes "Lattices in Computer Science" (from 2004) from the Tel Aviv University that are accessible via the link: https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/
- Daniele Micciancio's course notes "Lattices Algorithms and Applications" (from 2010) from the University of California San Diego that are accessible via the link: http://cseweb.ucsd.edu/classes/wi10/cse206a/
- Chi's, Choi's, Kim's and Kim's lecture notes "Lattice Based Cryptography for Beginners" accessible via the link: https://eprint.iacr.org/2015/938.pdf
- Steven D. Galbraith's book "Mathematics of public key cryptography".