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The formal definition of a lattice

Definition (lattice)

A lattice is a discrete additive subgroup of Rn.
In other words, a lattice is a subset Λ ⊆ Rn satisfying the
following properties:

1 (Subgroup property) Λ is closed under addition and
subtraction.

2 (Discreteness) There is an ε > 0 such that any two
distinct lattice points x 6= y ∈ Λ are at distance at least
‖x− y‖ ≥ ε.

5 / 64



Introduction
to lattices

Barthel Jim

Part I:
Definitions

Part II:
Comparing
lattices

Part III:
Gram-Schmidt
Orthogonal-
ization

Part IV:
Determinant

Part V:
Successive
minima

Part VI:
Minkowski’s
theorems

Part VII:
Computational
problems

References:

Constructing lattices

Definition 1 (lattice generated by linearly independent
vectors)

Let b1, ..., bn ∈ Rm be linearly independent vectors.
Let B = [b1, ..., bn].

1 The lattice generated by B is the set

L(B) = {Bx ∈ Zm : x ∈ Zn} =

{
n∑
i=1

xibi : xi ∈ Z

}
.

2 The matrix B is called the basis of the lattice L(B).

3 We call n the rank of L(B) and m the dimension of L(B).

4 If n = m, then L(B) is called a full rank lattice.

6 / 64



Introduction
to lattices

Barthel Jim

Part I:
Definitions

Part II:
Comparing
lattices

Part III:
Gram-Schmidt
Orthogonal-
ization

Part IV:
Determinant

Part V:
Successive
minima

Part VI:
Minkowski’s
theorems

Part VII:
Computational
problems

References:

Examples of lattices

A basis of Z2 Another basis of Z2

Not a basis of Z2 Not a full-rank lattice

7 / 64



Introduction
to lattices

Barthel Jim

Part I:
Definitions

Part II:
Comparing
lattices

Part III:
Gram-Schmidt
Orthogonal-
ization

Part IV:
Determinant

Part V:
Successive
minima

Part VI:
Minkowski’s
theorems

Part VII:
Computational
problems

References:

Definitions emerging from lattices

Definition 2

Let B be any lattice basis and let L(B) be the corresponding
lattice.

1 The span of L(B) is the vector space generated by B:

span(L(B)) = span(B) =< B >= {Bx ∈ Rm : x ∈ Rn}

2 The fundamental parallelepiped of the lattice basis B is
given by

P (B) = {Bx ∈ Rm : x ∈ Rn, 0 ≤ xi < 1 ∀0 ≤ i ≤ n}

=

{
n∑
i=1

xibi : 0 ≤ xi < 1

}
.
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More examples

A basis of Z2 Another basis of Z2

Not a basis of Z2 Not a full-rank lattice
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Part II:

Comparing lattices
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A lattice and its possible bases (1)

Lemma 3

Let Λ be a lattice of rank n, and let b1, ..., bn ∈ Λ be linearly
independent lattice vectors.
Then, b1, ..., bn form a basis of Λ ⇔ P (b1, ..., bn) ∩ Λ = {0}.
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A lattice and its possible bases (2)

We compare both lattices by superposing them:
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A lattice and its possible bases (3)

Proof of lemma 3:
1) b1, ..., bn form a basis of Λ ⇒ P (b1, ..., bn) ∩ Λ = {0}:
• By definition,

Λ =
{∑

xibi : xi ∈ Z
}
.

• Furthermore,

P (b1, ..., bn) =
{∑

xibi : 0 ≤ xi < 1
}
.

• Hence,
P (b1, ..., bn) ∩ Λ = {0}.
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A lattice and its possible bases (4)
2) P (b1, ..., bn) ∩ Λ = {0} ⇒ b1, ..., bn form a basis of Λ:

1 Since b1, ..., bn ∈ Λ, L(b1, ..., bn) ⊆ Λ.

2 • Since Λ is a lattice of rank n and b1, ..., bn are n linearly
independent lattice vectors of Λ,

∀x ∈ Λ : x =
∑

xibi (xi ∈ R).

• Let
x′ =

∑
bxic bi ∈ Λ.

• Let
x′′ = x− x′ =

∑
(xi − bxic)bi.

• Since Λ is closed under addition and subtraction

x′′ ∈ Λ.

• Since 0 ≤ xi − bxic < 1 for all 1 ≤ i ≤ n,

x′′ ∈ P (b1, ..., bn).
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A lattice and its possible bases (4)
2) P (b1, ..., bn) ∩ Λ = {0} ⇒ b1, ..., bn form a basis of Λ:

1 Since b1, ..., bn ∈ Λ, L(b1, ..., bn) ⊆ Λ.
2 • Since Λ is a lattice of rank n and b1, ..., bn are n linearly

independent lattice vectors of Λ,

∀x ∈ Λ : x =
∑

xibi (xi ∈ R).

• Let
x′ =

∑
bxic bi ∈ Λ.

• Let

x′′ = x− x′ =
∑

(xi − bxic)bi ∈ P (b1, ..., bn) ∩ Λ.

• Since P (b1, ..., bn) ∩ Λ = {0}, x′′ = 0.
• Since b1, ..., bn are linearly independent,

xi = bxic for all1 ≤ i ≤ n.
In particular xi is an integer for all 1 ≤ i ≤ n.

• Hence, x ∈ L(b1, ..., bn) and so

Λ ⊆ L(b1, ..., bn).
14 / 64
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Equivalence of bases (1)

Definition 4 (equivalence of lattices)

Let B1, B2 be lattice bases. We say that B1 is equivalent to
B2 if and only if L(B1) = L(B2).

Lemma 5

Two bases B1, B2 of rank n are equivalent if and only if there
exists an unimodular matrix U (i.e. U is a square matrix with
integer coefficients and det(U) = ±1) such that B2 = B1U .
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Equivalence of bases (2)

Note that(
1 2
1 1

)
=

(
0 1
1 0

)(
1 1
1 2

)
and that

det

(
1 2
1 1

)
= −1.
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Equivalence of bases (3)
Proof of lemma 5:
1) B1, B2 are equivalent ⇒ ∃U unimodular such that
B2 = B1U :
• Since B1 and B2 are equivalent,

L(B1) = L(B2).

• Since ∀1 ≤ i ≤ n : bi ∈ B2,

bi ∈ L(B2) = L(B1).

• By definition of the lattice L(B1),

∃ui ∈ Zn such that bi = B1ui.

• Let U = (u1, ..., un). Then clearly,

B2 = B1U.

• Similarly, one can construct V ∈ Zn×n such that

B1 = B2V.
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Equivalence of bases (3)

Proof of lemma 5:
1) B1, B2 are equivalent ⇒ ∃U unimodular such that
B2 = B1U :

• We deduce that B2 = B2V U and so

B2(Id− V U) = 0.

• Since the column vectors of B2 are linearly independent,
its inverse exists and so

Id = V U.

• Since 1 = det(Id) = det(V ) det(U) and U, V are integer
matrices,

det(U) = ±1.
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Equivalence of bases (4)
2) ∃U unimodular such that B2 = B1U ⇒ B1, B2 are
equivalent:

• Since B2 = B1U where B2 = (b1, ..., bn) and
U = (u1, ..., un),

∀1 ≤ i ≤ n : bi = B1ui.

• Since U is unimodular, bi ∈ L(B1) and hence

L(B2) ⊆ L(B1).

• Since any unimodular matrix has an inverse which is also
unimodular, we first deduce that

B1 = B2U
−1.

and then, the same argument as above yields

L(B1) ⊆ L(B2).
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Deducing one basis from another
one

Corollary 6

Two bases are equivalent if and only if one can be obtained from
the other by the following operations on columns:

1 bi ← bi + kbj for some k ∈ Z and i 6= j,

2 bi ↔ bj ,

3 bi ← −bi.
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Part III:

Gram-Schmidt Orthogonalization
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Gram-Schmidt orthogonalization

Definition 7 (Gram-Schmidt orthogonalization)

Given any sequence of n linearly independent vectors b1, ..., bn ∈
Rm, we define their Gram-Schmidt orthogonalization as the se-
quence of vectors b∗1, ..., b

∗
n ∈ Rm defined recursively by

b∗i = bi −
i−1∑
j=1

< bi, b
∗
j >

< b∗j , b
∗
j >

b∗j .

In other words, b∗i is the component of bi orthogonal to
b∗1, ..., b

∗
i−1.
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An example of Gram-Schmidt

The vector b∗2 does not belong to the lattice.
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Properties of Gram-Schmidt
orthogonalization

Remark 8

Let b1, ..., bn ∈ Rm be n linearly independent vectors and let
b∗1, ..., b

∗
n ∈ Rm be their Gram-Schmidt orthogonalization.

1 (Orthogonality) For all i 6= j we have < b∗i , b
∗
j >= 0.

2 (Basis) For all 1 ≤ i ≤ n,
span(b1, ..., bi) = span(b∗1, ..., b

∗
i ).

Note that in general L(b1, ..., bn) 6= L(b∗1, ..., b
∗
n) (most of

the time b∗i /∈ L(b1, ..., bn)) and that a lattice does not
always admit an orthogonal basis!

3 (Order) The order of the Gram-Schmidt procedure
matters.
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Volume of the fundamental
parallelepiped

vol(P (b1, b2)) = ‖b∗1‖ ‖b∗2‖ = 2

Remark 9

Let b1, ..., bn ∈ Rm be n linearly independent vectors and let
b∗1, ..., b

∗
n ∈ Rm be their Gram-Schmidt orthogonalization.

Then:

vol(P (b1, ..., bn)) =

n∏
i=1

‖b∗i ‖.
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Part IV:

Determinant
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Determinant

Definition 10 (determinant of lattices)

Let Λ = L(B) be a lattice of rank n. We define the
determinant of Λ (denoted by det(Λ)) to be the n-dimensional
volume of the fundamental parallelepiped P (B) associated to
B. In symbols:

det(Λ) = vol(P (B)) =

n∏
i=1

‖b∗i ‖.
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Properties of the determinant (1)

Proposition 11

For any lattice basis B ∈ Rn×m

1 det(L(B)) =
√

det(BTB),

2 In particular if B ∈ Rn×n is a (non-singular) square
matrix, then det(L(B)) = |det(B)| = d and dZn ⊆ L(B).

3 The determinant is independent of the basis.
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Properties of the determinant (2)
Proof of proposition 11:
1) det(L(B)) =

√
det(BTB) :

• By the Gram-Schmidt orthogonalization procedure, we know that

B = B∗M

where M is an upper triangular matrix with 1’s on the diagonal and
<bi,b

∗
j>

<b∗j ,b
∗
j>
‖b∗j‖ for all j < i.

• Hence,√
det(BTB) =

√
det(MT (B∗)TB∗M) =

√
det(MT ) det((B∗)TB∗) det(M).

• Since M is upper triangular and has only 1’s at its diagonal,

det(M) = det(MT ) = 1.

• Furthermore, by orthogonality of the columns of B∗,

det((B∗)TB∗) =

n∏
i=1

(‖b∗i ‖)2 = (det(L(B)))2.

• Since det(L(B)) ≥ 0 by definition,√
det((B∗)TB∗) = det(L(B)).
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Properties of the determinant (3)
2) If B ∈ Rn×n is a (non-singular) square matrix, then
det(L(B)) = | det(B)| = d and dZn ⊆ L(B).

• Since B is a square matrix,

det(L(B)) =
√

det(BTB) =
√

(det(B))2 = | det(B)|.

• Let v = dy ∈ dZn where y ∈ Zn.

• Since B is non-singular, there is

x = B−1dy ∈ Rn.

• By Cramer’s rule:

xi =
det((b1, ..., bi−1, dy, bi+1, ..., bn))

det(B)

= ±det((b1, ..., bi−1, dy, bi+1, ..., bn)) ∈ Z

• Thus,
x ∈ Zn.

• Hence,
v = Bx ∈ L(B).
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Properties of the determinant (4)

3) The determinant is independent of the basis.

• Let B1, B2 be equivalent bases. Then, there is a unimodular matrix
U such that

B2 = B1U.

• Thus,

det(L(B2)) =
√

det(BT2 B2)

=
√

det(UTBT1 B1U)

=
√

(det(U))2 det(BT1 B1)

=
√

det(BT1 B1)

= det(L(B1))
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Remarks about the determinant

Remark 12

For any lattice basis B ∈ Rn×m

1 (Hadamar inequality)

det(L(B)) =

n∏
i=1

‖b∗i ‖ ≤
n∏
i=1

‖bi‖

(since ‖b∗i ‖ ≤ ‖bi‖).

2 Geometrically, the determinant represents the inverse of
the density of lattice points in space (e.g., the number of
lattice points in a large and sufficiently regular region of
space A should be approximately equal to the volume of A
divided by the determinant.)

Small determinant = Dense lattice
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An example of a determinant

By previous computations: det (L ( 0 1
2 1 )) =

√
det (( 0 2

1 1 ) ( 0 1
2 1 ))

det(L(b1, b2)) = ‖b∗1‖ ‖b∗2‖ = 2 =
√

det (( 4 2
2 2 )) = 2

Hadamar’s inequality is satisfied:

det(L(b1, b2)) ≤ 2
√

2 = ‖b1‖ ‖b2‖

Note
det (L ( 1 0

0 1 )) = 1

Hence, L ( 1 0
0 1 ) (i.e. dark and light blue points) is denser than L ( 0 1

2 1 ).
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Part V:

Successive minima
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Sucessive minima (1)

Definition 13a (minimum distance)

Let Λ = L(B) be a lattice of rank n.
The minimum distance λ1 of Λ is the smallest distance between any
two lattice points:

λ1(Λ) = inf{‖x− y‖ : x, y ∈ Λ, x 6= y}.

Equivalently, the minimum distance can be defined as the shortest
non-zero vector of Λ:

λ1(Λ) = inf{‖v‖ : v ∈ Λ \ {0}}.

Equivalently, the minimum distance is the smallest r > 0 such that Λ
contains at least one vector of length bounded by r,

λ1(Λ) = inf{r ∈ R>0 : dim(span(Λ ∩B(0, r))) ≥ 1}

where B(0, r) = {x ∈ Rm : ‖x‖ ≤ r} is the closed ball of radius r
around 0.
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Sucessive minima (2)

Definition 13b (successive minima)

Let Λ = L(B) be a lattice of rank n.
For i ∈ {1, ..., n}, we define the ith successive minimum as the
smallest r > 0 such that Λ contains at least i linearly independent
vectors of length bounded by r,

λi(Λ) = inf{r ∈ R>0 : dim(span(Λ ∩B(0, r))) ≥ i}

where B(0, r) = {x ∈ Rm : ‖x‖ ≤ r} is the closed ball of radius r
around 0.
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An example of successive minima

Consider L
(

1/2 3/2
3 3

)
.
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An example of successive minima

Start to grow a circle at the origin until you meet a point to find λ1.
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An example of successive minima

Keep growing the circle until you meet a second point that lies
not on the line given by the minimal vector to find λ2.
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Rough lower bound (1)

Theorem 14

Let B be a rank n lattice basis and let B∗ be its Gram-Schmidt
orthogonalization. Then:

λ1(Λ) ≥ min
i=1,...,n

‖b∗i ‖ > 0.

Thus, for any two non-equal lattice points x, y ∈ Λ

‖x− y‖ ≥ min
i=1,...,n

‖b∗i ‖ > 0
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Rough lower bound (2)
Proof of theorem 14:

• Let,
Bx ∈ L(B) \ {0}

be a generic lattice vector where x ∈ Zn \ {0}.
• Let

k = max{k ∈ {1, ..., n} : xk 6= 0}.

• Then, by orthogonality

| < Bx, b∗k > | =

∣∣∣∣∣∣
∑
i≤k

< bixi, b
∗
k >

∣∣∣∣∣∣ = |xk < bk, b
∗
k > | = |xk|‖b∗k‖2.

• By Cauchy-Schwartz,

| < Bx, b∗k > | ≤ ‖Bx‖ ‖b∗k‖.

• Since |xk| ≥ 1 and ‖b∗k‖ 6= 0,

‖b∗k‖ ≤ ‖Bx‖.
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The successive minima are
achieved (1)

Theorem 15

The successive minima of a lattice are achieved.
In other words, for every 1 ≤ i ≤ n, there exists a vector vi ∈ Λ
with ‖vi‖ = λi(Λ).
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The successive minima are
achieved (2)

Proof of theorem 14:
• Let,

S = B(0, 2λ1(Λ)) = {x ∈ Rm : ‖x‖ < 2λ1(Λ)}.
• By definition of the minimal distance, there is at least one lattice

point x ∈ S.

• Thus,
λ1(Λ) = inf{‖x‖ : x ∈ Λ ∩ S \ {0}}.

• Consider a small sphere of radius 1
2
λ1(Λ) around each lattice point:

B

(
x,

1

2
λ1(Λ)

)
for all x ∈ Λ.

• Since the minimal distance between lattice points is λ1(Λ),

B

(
x,

1

2
λ1(Λ)

)
∩B

(
y,

1

2
λ1(Λ)

)
= ∅ for all x 6= y ∈ Λ.

• For all x ∈ S ∩ Λ,

B

(
x,

1

2
λ1(Λ)

)
⊆ B(0, 3λ1(Λ)) = S′.

40 / 64



Introduction
to lattices

Barthel Jim

Part I:
Definitions

Part II:
Comparing
lattices

Part III:
Gram-Schmidt
Orthogonal-
ization

Part IV:
Determinant

Part V:
Successive
minima

Part VI:
Minkowski’s
theorems

Part VII:
Computational
problems

References:

The successive minima are
achieved (3)

• Notice that:

vol

(
B

(
x,

1

2
λ1(Λ)

))
= Cn

(
1

2
λ1(Λ)

)n
and

vol(0, 3λ1(Λ)) = Cn(3λ1(Λ))n

• Hence, there are at most 6n lattice points in S. So,

λ1(Λ) = inf{‖x‖ : x ∈ Λ ∩ S \ {0}} = min{‖x‖ : x ∈ Λ ∩ S \ {0}}.

• By a similar argument, one proves the theorem for the other
successive minima.
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Part VI:

Minkowski’s theorems
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Blichfeld’s theorem (1)

Theorem 16 (Blichfeld)

Let Λ = L(B) ⊆ Rn be a full-rank lattice and let S ⊆ Rn be
a subset with vol(S) > det(Λ). Then, there exist two nonequal
points z1, z2 ∈ S such that z1 − z2 ∈ Λ.
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Blichfeld example

Consider the lattice Λ and S ⊆ Rn with vol(S) > det(Λ).
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Blichfeld example

Then, we want to find z1, z2 ∈ S such that z1 − z2 ∈ Λ.
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Blichfeld example

To do so, consider R2 partitioned by the lattice.
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Blichfeld example

Reduce all of R2 to the fundamental
parallelepiped and look for intersections,

this gives us the two points we are looking for.
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Blichfeld’s theorem (2)
Proof of theorem 16:

• As x ranges over all of Λ, we can partition Rn by considering the sets

x+ P (B) = {x+ y : y ∈ P (B)}.

• For any x ∈ Λ, define

Sx = S ∩ (x+ P (B)).

• Since x+ P (B) partitions Rn, it does so with S. Hence,

Sx ∩ Sy = ∅ (∀x 6= y) and S = ∪x∈ΛSx.

• This implies that

vol(S) =
∑
x∈Λ

vol(Sx).

• Translate the pieces Sx into the fundamental parallelepiped by
defining

Ŝx = Sx − x.
Clearly Ŝx ⊆ P (B) and vol(Sx).
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Blichfeld’s theorem (3)

• Furthermore,∑
x∈Λ

vol(Ŝx) =
∑
x∈Λ

vol(Sx) = vol(S) > vol(P (B)).

Thus, there must exist x 6= y ∈ Λ such that

Ŝx ∩ Ŝy 6= ∅.

• Let z ∈ Ŝx ∩ Ŝy. Then,

z + x ∈ Sx ⊆ S and z + y ∈ Sy ⊆ S.

• Since x, y ∈ Λ,

(z + x)− (z + y) = x− y ∈ Λ.
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Minkowski’s convex body theorem
(1)

Definition 17

A subset S ⊆ Rn is called:

1 centrally-symmetric if for any x ∈ S we also have −x ∈ S,

2 convex if for any x, y ∈ S we also have µx+ (1− µ)y ∈ S
for all µ ∈ [0, 1].

Theorem 18 (Minkowski - convex body)

Let Λ be a full-rank lattice of rank n. Then, any centrally-
symmetric convex set S with vol(S) > 2n det(Λ) contains a
non-zero lattice point.
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Minkowski convex body example

Since vol(S) > 4 det(Λ):
vol( 1

2
S) = 1

4
vol(S) > det(Λ).

Blichfeld’s theorem implies the existence of a non-zero lattice
point z1 − z2 which happens to be also in S.
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Minkowski’s convex body theorem
(2)

Proof of theorem 18:

• Define

Ŝ =
1

2
S = {x ∈ Rn : 2x ∈ S}.

• Clearly
vol(Ŝ) = 2−nvol(S) > det(Λ).

• Blichfeld’s theorem implies that

∃z1 6= z2 ∈ Ŝ such that 0 6= z1 − z2 ∈ Λ.

• By definition,
2z1, 2z2 ∈ S.

• Since S is centrally-symmetric,

−2z2 ∈ S.

• Since S is convex,

2z1 − 2z2

2
= z1 − z2 ∈ S.
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Minkowski’s first theorem (1)

Theorem 19 (Minkowski - 1)

For any full-rank lattice Λ of rank n,

λ1(Λ) ≤
√
n(det(Λ))1/n.

√
n(det(Λ))1/n is called the Minkowski bound.
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Minkowski’s first theorem (2)

Proof of theorem 19:

• Consider the open sphere B(0, λ1(Λ)) centered at 0 of radius λ1(Λ).

• By definition, B(0, λ1(Λ)) is centrally-symmetric and convex but
contains no non-zero lattice points.

• Minkowski’s convex body theorem implies that

vol(B(0, λ1(Λ))) ≤ 2n det(Λ).

• Note that B(0, λ1(Λ)) contains a cube of side length 2λ1(Λ)√
n

and so(
2λ1(Λ)√

n

)n
≤ vol(B(0, λ1(Λ))).

• Thus,
λ1(Λ) ≤

√
n(det(Λ))1/n.
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Minkowski’s first theorem (3)

Remarks 19

1 Using the fact that vol(B(0, λ1(Λ))) = πn/2

Γ( n
2

+1)
(λ1(Λ))n, one can

obtain an upper bound for λ1(Λ) that is a lot tighter than√
n(det(Λ))1/n.

2 λ1(Λ) can be very small compared to the Minkowski bound.
Indeed, consider in dimension 2 the lattice given by (1, 0)T and
(0, N)T where N ∈ N \ {0}. Then, the Minkovsky bound is

√
2
√
N

but λ1(Λ) = 1.

3 λ1(Λ) can be very close to the Minkowski bound.
Indeed, one can show, that in any dimension, there exists a lattice
with shortest vector at least c

√
n(det(Λ))1/n for some constant c.

4 It has been shown that O(
√

(n)) det(Λ)1/n is the best upper bound
one can possibly prove.

5 The term (det(Λ))1/n makes sure that the expressions scale properly.
Indeed, λ1(cΛ) = cλ1(Λ) and (det(cΛ))1/n = c(det(Λ))1/n.
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Minkowski’s second theorem (1)

Theorem 20 (Minkowski - 2)

For any full-rank lattice Λ of rank n,(
n∏
i=1

λi(Λ)

)1/n

≤
√
n(det(Λ))1/n.
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Minkowski’s second theorem (2)
Proof of theorem 20:

• Let x1, ..., xn ∈ Λ be linearly independent vectors achieving the
successive minima (i.e. ‖xi‖ = λi(Λ)).

• Let x∗1, ..., x
∗
n be their Gram-Schmidt orthogonalization.

• Consider the open ellipsoid T with axes x∗1, ..., x
∗
n and lengths

λ1(Λ), ..., λn(Λ),

T =

{
y ∈ Rn :

n∑
i=1

(
< y, x∗i >

‖x∗i ‖λi(Λ)

)2

< 1

}
.

• Let y ∈ Λ and let

k = max{k ∈ {1, ..., n} : ‖y‖ ≥ λk(Λ)}.

• Then,
y ∈ span(x∗1, ..., x

∗
k) = span(x1, ..., xk),

else x1, ..., xk, y would be k+ 1 linearly independent vectors of length
less than λk+1(Λ).
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Minkowski’s second theorem (3)

• Thus,

n∑
i=1

(
< y, x∗i >

‖x∗i ‖λi(Λ)

)2

=

k∑
i=1

(
< y, x∗i >

‖x∗i ‖λi(Λ)

)2

≥ 1

(λk(Λ))2

k∑
i=1

(
< y, x∗i >

‖x∗i ‖

)2

=
‖y‖2

(λk(Λ))2

≥ 1.

• Hence,
y /∈ T.
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Minkowski’s second theorem (4)

• By Minkowski’s convex body theorem,

vol(T ) ≥ 2n det(Λ).

• On the other hand, by the volume formula for ellipsoids,

vol(T ) =

(
n∏
i=1

λi(Λ)

)
vol(B(0, 1)) ≥

(
n∏
i=1

λi(Λ)

)(
2√
n

)n
.

• Combining both bounds yields(
n∏
i=1

λi(Λ)

)1/n

≤
√
n(det(Λ))1/n.
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Minkowski’s second theorem (5)

Remarks 21

1 Using the fact that vol(B(0, 1)) = πn/2

Γ( n
2

+1)
, one can obtain a better

upper bound for the geometric mean
(∏n

i=1 λi(Λ)
)1/n

.

2 The two previous results can easily be converted for any other norm.

3 The two previous results can be adapted to lattices of general rank.
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Part VII:

Computational problems
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Shortest vector problem

Search SVP
Given a lattice basis B ∈ Zm×n,
find v ∈ L(B) such that 0 6= ‖v‖ = λ1(L(B)).

Optimization SVP

Given a lattice basis B ∈ Zm×n,
find λ1(L(B)).

Decisional SVP
Given a lattice basis B ∈ Zm×n and a rational r ∈ Q,
determine whether λ1(L(B)) ≤ r or not.

Surprisingly:

Search SVP ⇔ Optimization SVP ⇔ Decisional SVP
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Approximate shortest vector
problem

Let γ ≥ 1.

Search SVPγ

Given a lattice basis B ∈ Zm×n,
find v ∈ L(B) such that 0 6= ‖v‖ ≤ γλ1(L(B)).

Optimization SVPγ

Given a lattice basis B ∈ Zm×n,
find d such that d ≤ λ1(L(B)) ≤ γd.

Promise SVPγ or GapSVPγ

Given a lattice basis B ∈ Zm×n and a rational r ∈ Q,
determine whether (B, r) belongs to the YES instance (=λ1(L(B)) ≤ r)
or to the NO instance (λ1(L(B)) > γr).

Surprisingly:

Search SVPγ ⇒ Optimization SVPγ ⇔ Promise SVPγ
60 / 64



Introduction
to lattices

Barthel Jim

Part I:
Definitions

Part II:
Comparing
lattices

Part III:
Gram-Schmidt
Orthogonal-
ization

Part IV:
Determinant

Part V:
Successive
minima

Part VI:
Minkowski’s
theorems

Part VII:
Computational
problems

References:

Closest vector problem

Let γ ≥ 1.

Search CVPγ

Given a lattice basis B ∈ Zm×n and a vector t ∈ Zm,
find v ∈ L(B) such that ‖v − t‖ ≤ γdist(t,L(B)).

Optimization CVPγ

Given a lattice basis B ∈ Zm×n and a vector t ∈ Zm,
find d such that d ≤ dist(t,L(B)) ≤ γd.

Promise CVPγ or GapCVPγ

Given a lattice basis B ∈ Zm×n, a rational r ∈ Q and a vector t ∈ Zm,
determine whether (B, r, t) belongs to the YES instance
(=dist(t,L(B)) ≤ r) or to the NO instance (= dist(t,L(B)) > γr).
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Miscellaneous lattice problems

SIVP
Given a lattice basis B ∈ Zm×n,
find n linearly independent vectors v1, ..., vn ∈ L(B) such that
0 6= ‖vi‖ ≤ γλi(L(B)).

Bounded distance decoding

Given a lattice basis B ∈ Zm×n and a vector t ∈ Zm such that
dist(t,L(B)) < λ1(L(B))

n
for a given n ∈ N,

find v ∈ L(B) such that ‖v − t‖ < λ1(dist(t,L(B)))
n

.

Covering radius problem

Given a lattice basis B ∈ Zm×n,
find the largest distance from any vector to the lattice.
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Remarks about lattice problems

Remarks 21

1 Many lattice problems are conjectured to be hard!

2 Finding the shortest vector is hard however, finding a short vector is
manageable using different algorithms.

3 Many cryptographic schemes based on lattice problems seem to be
secure and are even conjectured to be quantum secure.
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• Oded Regev’s course notes ”Lattices in Computer Science” (from
2004) from the Tel Aviv University that are accessible via the link:
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/

• Daniele Micciancio’s course notes ”Lattices Algorithms and
Applications” (from 2010) from the University of California San
Diego that are accessible via the link:
http://cseweb.ucsd.edu/classes/wi10/cse206a/

• Chi’s, Choi’s, Kim’s and Kim’s lecture notes ”Lattice Based
Cryptography for Beginners” accessible via the link:
https://eprint.iacr.org/2015/938.pdf

• Steven D. Galbraith’s book ”Mathematics of public key
cryptography”.
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